forked from KEMT/zpwiki
		
	
		
			
				
	
	
		
			70 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			70 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import timing
 | |
| import argparse
 | |
| import sys
 | |
| 
 | |
| import numpy as np
 | |
| 
 | |
| import torch.nn as nn
 | |
| from torch.autograd import Variable
 | |
| from torch.optim import SGD
 | |
| from torch.utils.data import DataLoader
 | |
| 
 | |
| from util.util import enumerateWithEstimate
 | |
| from .dsets import PrepcacheLunaDataset, getCtSampleSize
 | |
| from util.logconf import logging
 | |
| # from .model import LunaModel
 | |
| 
 | |
| log = logging.getLogger(__name__)
 | |
| # log.setLevel(logging.WARN)
 | |
| log.setLevel(logging.INFO)
 | |
| # log.setLevel(logging.DEBUG)
 | |
| 
 | |
| 
 | |
| class LunaPrepCacheApp:
 | |
|     @classmethod
 | |
|     def __init__(self, sys_argv=None):
 | |
|         if sys_argv is None:
 | |
|             sys_argv = sys.argv[1:]
 | |
| 
 | |
|         parser = argparse.ArgumentParser()
 | |
|         parser.add_argument('--batch-size',
 | |
|             help='Batch size to use for training',
 | |
|             default=1024,
 | |
|             type=int,
 | |
|         )
 | |
|         parser.add_argument('--num-workers',
 | |
|             help='Number of worker processes for background data loading',
 | |
|             default=8,
 | |
|             type=int,
 | |
|         )
 | |
|         # parser.add_argument('--scaled',
 | |
|         #     help="Scale the CT chunks to square voxels.",
 | |
|         #     default=False,
 | |
|         #     action='store_true',
 | |
|         # )
 | |
| 
 | |
|         self.cli_args = parser.parse_args(sys_argv)
 | |
| 
 | |
|     def main(self):
 | |
|         log.info("Starting {}, {}".format(type(self).__name__, self.cli_args))
 | |
| 
 | |
|         self.prep_dl = DataLoader(
 | |
|             PrepcacheLunaDataset(
 | |
|                 # sortby_str='series_uid',
 | |
|             ),
 | |
|             batch_size=self.cli_args.batch_size,
 | |
|             num_workers=self.cli_args.num_workers,
 | |
|         )
 | |
| 
 | |
|         batch_iter = enumerateWithEstimate(
 | |
|             self.prep_dl,
 | |
|             "Stuffing cache",
 | |
|             start_ndx=self.prep_dl.num_workers,
 | |
|         )
 | |
|         for batch_ndx, batch_tup in batch_iter:
 | |
|             pass
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     LunaPrepCacheApp().main()
 |