forked from KEMT/zpwiki
		
	
		
			
				
	
	
		
			152 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			152 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""Scripts used for training and evaluation of NER models
 | 
						|
Usage example:
 | 
						|
$ python custom_train.py train ./model ./train.jsonl ./eval.jsonl -o ./output_dir -n 15
 | 
						|
Requirements:
 | 
						|
spacy>=2.2.3
 | 
						|
https://github.com/explosion/projects/tree/master/ner-drugs
 | 
						|
"""
 | 
						|
import spacy
 | 
						|
from spacy.cli.train import _load_pretrained_tok2vec
 | 
						|
from timeit import default_timer as timer
 | 
						|
from pathlib import Path
 | 
						|
import srsly
 | 
						|
from wasabi import msg
 | 
						|
import random
 | 
						|
import plac
 | 
						|
import sys
 | 
						|
import tqdm
 | 
						|
 | 
						|
 | 
						|
def format_data(data):
 | 
						|
    result = []
 | 
						|
    labels = set()
 | 
						|
    for eg in data:
 | 
						|
        if eg["answer"] != "accept":
 | 
						|
            continue
 | 
						|
        ents = [(s["start"], s["end"], s["label"]) for s in eg.get("spans", [])]
 | 
						|
        labels.update([ent[2] for ent in ents])
 | 
						|
        result.append((eg["text"], {"entities": ents}))
 | 
						|
    return result, labels
 | 
						|
 | 
						|
 | 
						|
@plac.annotations(
 | 
						|
    model=("The base model to load or blank:lang", "positional", None, str),
 | 
						|
    train_path=("The training data (Prodigy JSONL)", "positional", None, str),
 | 
						|
    eval_path=("The evaluation data (Prodigy JSONL)", "positional", None, str),
 | 
						|
    n_iter=("Number of iterations", "option", "n", int),
 | 
						|
    output=("Optional output directory", "option", "o", str),
 | 
						|
    tok2vec=("Pretrained tok2vec weights to initialize model", "option", "t2v", str),
 | 
						|
)
 | 
						|
def train_model(
 | 
						|
    model, train_path, eval_path, n_iter=10, output=None, tok2vec=None,
 | 
						|
):
 | 
						|
    """
 | 
						|
    Train a model from Prodigy annotations and optionally save out the best
 | 
						|
    model to disk.
 | 
						|
    """
 | 
						|
    spacy.util.fix_random_seed(0)
 | 
						|
    with msg.loading(f"Loading '{model}'..."):
 | 
						|
        if model.startswith("blank:"):
 | 
						|
            nlp = spacy.blank(model.replace("blank:", ""))
 | 
						|
        else:
 | 
						|
            nlp = spacy.load(model)
 | 
						|
    msg.good(f"Loaded model '{model}'")
 | 
						|
    train_data, labels = format_data(srsly.read_jsonl(train_path))
 | 
						|
    eval_data, _ = format_data(srsly.read_jsonl(eval_path))
 | 
						|
    ner = nlp.create_pipe("ner")
 | 
						|
    for label in labels:
 | 
						|
        ner.add_label(label)
 | 
						|
    nlp.add_pipe(ner)
 | 
						|
    t2v_cfg = {
 | 
						|
        "embed_rows": 10000,
 | 
						|
        "token_vector_width": 128,
 | 
						|
        "conv_depth": 8,
 | 
						|
        "nr_feature_tokens": 3,
 | 
						|
    }
 | 
						|
    optimizer = nlp.begin_training(component_cfg={"ner": t2v_cfg} if tok2vec else {})
 | 
						|
    if tok2vec:
 | 
						|
        _load_pretrained_tok2vec(nlp, Path(tok2vec))
 | 
						|
    batch_size = spacy.util.compounding(1.0, 32.0, 1.001)
 | 
						|
    best_acc = 0
 | 
						|
    best_model = None
 | 
						|
    row_widths = (2, 8, 8, 8, 8)
 | 
						|
    msg.row(("#", "L", "P", "R", "F"), widths=row_widths)
 | 
						|
    for i in range(n_iter):
 | 
						|
        random.shuffle(train_data)
 | 
						|
        losses = {}
 | 
						|
        data = tqdm.tqdm(train_data, leave=False)
 | 
						|
        for batch in spacy.util.minibatch(data, size=batch_size):
 | 
						|
            texts, annots = zip(*batch)
 | 
						|
            nlp.update(texts, annots, drop=0.2, losses=losses)
 | 
						|
        with nlp.use_params(optimizer.averages):
 | 
						|
            sc = nlp.evaluate(eval_data)
 | 
						|
            if sc.ents_f > best_acc:
 | 
						|
                best_acc = sc.ents_f
 | 
						|
                if output:
 | 
						|
                    best_model = nlp.to_bytes()
 | 
						|
        acc = (f"{sc.ents_p:.3f}", f"{sc.ents_r:.3f}", f"{sc.ents_f:.3f}")
 | 
						|
        msg.row((i + 1, f"{losses['ner']:.2f}", *acc), widths=row_widths)
 | 
						|
    msg.text(f"Best F-Score: {best_acc:.3f}")
 | 
						|
    if output and best_model:
 | 
						|
        with msg.loading("Saving model..."):
 | 
						|
            nlp.from_bytes(best_model).to_disk(output)
 | 
						|
        msg.good("Saved model", output)
 | 
						|
 | 
						|
 | 
						|
@plac.annotations(
 | 
						|
    model=("The model to evaluate", "positional", None, str),
 | 
						|
    eval_path=("The evaluation data (Prodigy JSONL)", "positional", None, str),
 | 
						|
)
 | 
						|
def evaluate_model(model, eval_path):
 | 
						|
    """
 | 
						|
    Evaluate a trained model on Prodigy annotations and print the accuracy.
 | 
						|
    """
 | 
						|
    with msg.loading(f"Loading model '{model}'..."):
 | 
						|
        nlp = spacy.load(model)
 | 
						|
    data, _ = format_data(srsly.read_jsonl(eval_path))
 | 
						|
    sc = nlp.evaluate(data)
 | 
						|
    result = [
 | 
						|
        ("Precision", f"{sc.ents_p:.3f}"),
 | 
						|
        ("Recall", f"{sc.ents_r:.3f}"),
 | 
						|
        ("F-Score", f"{sc.ents_f:.3f}"),
 | 
						|
    ]
 | 
						|
    msg.table(result)
 | 
						|
 | 
						|
 | 
						|
@plac.annotations(
 | 
						|
    model=("The model to evaluate", "positional", None, str),
 | 
						|
    data=("Raw data as JSONL", "positional", None, str),
 | 
						|
)
 | 
						|
def wps(model, data):
 | 
						|
    """
 | 
						|
    Measure the processing speed in words per second. It's recommended to
 | 
						|
    use a larger corpus of raw text here (e.g. a few million words).
 | 
						|
    """
 | 
						|
    with msg.loading(f"Loading model '{model}'..."):
 | 
						|
        nlp = spacy.load(model)
 | 
						|
    texts = (eg["text"] for eg in srsly.read_jsonl(data))
 | 
						|
    n_docs = 0
 | 
						|
    n_words = 0
 | 
						|
    start_time = timer()
 | 
						|
    for doc in nlp.pipe(texts):
 | 
						|
        n_docs += 1
 | 
						|
        n_words += len(doc)
 | 
						|
    end_time = timer()
 | 
						|
    wps = int(n_words / (end_time - start_time))
 | 
						|
    result = [
 | 
						|
        ("Docs", f"{n_docs:,}"),
 | 
						|
        ("Words", f"{n_words:,}"),
 | 
						|
        ("Words/s", f"{wps:,}"),
 | 
						|
    ]
 | 
						|
    msg.table(result, widths=(7, 12), aligns=("l", "r"))
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    opts = {"train": train_model, "evaluate": evaluate_model, "wps": wps}
 | 
						|
    cmd = sys.argv.pop(1)
 | 
						|
    if cmd not in opts:
 | 
						|
        msg.fail(f"Unknown command: {cmd}", f"Available: {', '.join(opts)}", exits=1)
 | 
						|
    try:
 | 
						|
        plac.call(opts[cmd])
 | 
						|
    except KeyboardInterrupt:
 | 
						|
        msg.warn("Stopped.", exits=1) |