forked from KEMT/zpwiki
		
	
		
			
				
	
	
		
			84 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			84 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# mozeme pouzit pri nacitavani priamo zo subora *.gz
 | 
						|
# import gzip
 | 
						|
import gensim
 | 
						|
import logging
 | 
						|
import os
 | 
						|
 | 
						|
# nastavenie pre event logging
 | 
						|
logging.basicConfig(
 | 
						|
    format='%(asctime)s : %(levelname)s : %(message)s',
 | 
						|
    level=logging.INFO)
 | 
						|
 | 
						|
 | 
						|
def show_file_contents(input_file):
 | 
						|
    with open(input_file, 'rb') as f:
 | 
						|
        for i, line in enumerate(f):
 | 
						|
            print(line)
 | 
						|
            break
 | 
						|
 | 
						|
# nacitanie vstupu v binarnom formate
 | 
						|
 | 
						|
 | 
						|
def read_input(input_file):
 | 
						|
    logging.info(
 | 
						|
        "nacitavam subor {0}...moze to chvilku trvat".format(input_file))
 | 
						|
    with open(input_file, 'rb') as f:
 | 
						|
        for i, line in enumerate(f):
 | 
						|
 | 
						|
            if (i % 1000 == 0):
 | 
						|
                logging.info("nacitane {0} riadkov".format(i))
 | 
						|
            # jednoducha uprava vstupu, vracia list of words
 | 
						|
            yield gensim.utils.simple_preprocess(line)
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
 | 
						|
    documents = list(read_input('files.txt'))
 | 
						|
    logging.info("Vsetky data boli nacitane")
 | 
						|
 | 
						|
    # vytvorenie slovnika a natrenovanie modelu
 | 
						|
    model = gensim.models.Word2Vec(
 | 
						|
        documents,
 | 
						|
        size=150,
 | 
						|
        window=10,
 | 
						|
        min_count=2,
 | 
						|
        workers=10)
 | 
						|
    model.train(documents, total_examples=len(documents), epochs=10)
 | 
						|
 | 
						|
    # ulozenie vektorov slov
 | 
						|
    model.wv.save(os.path.join("./vectors/default"))
 | 
						|
 | 
						|
    # hladanie podobnych slov
 | 
						|
    w1 = "kostol"
 | 
						|
    print("Najpodobnejsie slovo slovu {0}".format(
 | 
						|
        w1), model.wv.most_similar(positive=w1))
 | 
						|
 | 
						|
    # najdenie n podobnych slov pre rozne slova
 | 
						|
    w1 = ["trh"]
 | 
						|
    print(
 | 
						|
        "Najpodobnejsie slovu {0}".format(w1),
 | 
						|
        model.wv.most_similar(
 | 
						|
            positive=w1,
 | 
						|
            topn=6))
 | 
						|
 | 
						|
    w1 = ["letisko"]
 | 
						|
    print(
 | 
						|
        "Najpodobnejsie slovu {0}".format(w1),
 | 
						|
        model.wv.most_similar(
 | 
						|
            positive=w1,
 | 
						|
            topn=6))
 | 
						|
 | 
						|
    w1 = ["škola"]
 | 
						|
    print(
 | 
						|
        "Najpodobnejsie slovu {0}".format(w1),
 | 
						|
        model.wv.most_similar(
 | 
						|
            positive=w1,
 | 
						|
            topn=6))
 | 
						|
 | 
						|
    w1 = ["súradnice"]
 | 
						|
    print(
 | 
						|
        "Najpodobnejsie slovu {0}".format(w1),
 | 
						|
        model.wv.most_similar(
 | 
						|
            positive=w1,
 | 
						|
            topn=6))
 |