forked from KEMT/zpwiki
		
	zz
This commit is contained in:
		
							parent
							
								
									01077d3731
								
							
						
					
					
						commit
						d88f27564f
					
				| @ -1,11 +1,9 @@ | ||||
| # Question Answering | ||||
| 
 | ||||
| [Project repository](https://git.kemt.fei.tuke.sk/dano/annotation) | ||||
| [Project repository](https://git.kemt.fei.tuke.sk/dano/annotation) (private) | ||||
| 
 | ||||
| ## Project Description | ||||
| 
 | ||||
| Task definition: | ||||
| 
 | ||||
| - Create a clone of [SQuaD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) in the Slovak language | ||||
| - Setup annotation infrastructure with [Prodigy](https://prodi.gy/) | ||||
| - Perform and evaluate annotations of [Wikipedia data](https://dumps.wikimedia.org/backup-index.html). | ||||
| @ -129,12 +127,13 @@ TBD | ||||
| - Reading Wikipedia to Answer Open-Domain Questions, Danqi Chen, Adam Fisch, Jason Weston, Antoine Bordes | ||||
| Facebook Research | ||||
| - SQuAD: 100,000+ Questions for Machine Comprehension of Text https://arxiv.org/abs/1606.05250 | ||||
| - [WDaqua](https://wdaqua.eu/our-work/) publications | ||||
| 
 | ||||
| ## Existing Datasets | ||||
| 
 | ||||
| - Squad TheStanfordQuestionAnsweringDataset(SQuAD)  (Rajpurkar  et  al.,  2016)  | ||||
| - WebQuestions | ||||
| - https://en.wikipedia.org/wiki/Freebase | ||||
| - [Squad](https://rajpurkar.github.io/SQuAD-explorer/)  The Stanford Question Answering Dataset(SQuAD)  (Rajpurkar  et  al.,  2016)  | ||||
| - [WebQuestions](https://github.com/brmson/dataset-factoid-webquestions) | ||||
| - [Freebase](https://en.wikipedia.org/wiki/Freebase) | ||||
| 
 | ||||
| ## Intern tasks | ||||
| 
 | ||||
| @ -142,6 +141,7 @@ Week 1: Intro | ||||
| 
 | ||||
| - Get acquainted with the project and Squad Database | ||||
| - Download the database and study the bibliography | ||||
| - Study [Prodigy annnotation](https://Prodi.gy) tool | ||||
| 
 | ||||
| Week 2 and 3: Web Application | ||||
| 
 | ||||
| @ -160,7 +160,7 @@ Select and train a working question answering system | ||||
| Output: | ||||
| 
 | ||||
| - a deployment script with comments for a selected question answering system  | ||||
| - a working training recipe (can use English ata), a script with comments or Jupyter Notebook | ||||
| - a working training recipe (can use English data), a script with comments or Jupyter Notebook | ||||
| - a trained model | ||||
| - evaluation of the model (if possible) | ||||
| 
 | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user