diff --git a/pages/students/2019/michal_stromko/vp2023/Dokumentacia.md b/pages/students/2019/michal_stromko/vp2023/Dokumentacia.md index 65f381174..60525cc00 100644 --- a/pages/students/2019/michal_stromko/vp2023/Dokumentacia.md +++ b/pages/students/2019/michal_stromko/vp2023/Dokumentacia.md @@ -61,6 +61,16 @@ Ako môžete vidieť v práci som použil model LaBSE aj keď som mal k dispozí slovakbert-sts-stsb - popísať na akom princípe je založený +### Výsledky experimentov + +Spolu bolo realizovananých 20 experimentov vyhnotenia vyhľadávania na trénovacom datasete skquad. Každý jeden experiment pozostával z indexovania datasetu a následním vyhľadávaním na vopred vytvorených otázkach. Meódy medzi sebou mali spoločný počet experimentov a pri každej metóde boli vypočítané metriky Precission a Recall.Zároveň na každej metóde bolo vykonaných 5 experimentov s rôznymi parametrami top_k. Z týchto experimentov vznikla jedna veľká nie moc prehľadná tabuľka, ktorú môžete vidieť nižšie. + +| Evaluation mode | 5 Precision | 5 Recall | 10 Precision | 10 Recall | 15 Precision | 15 Recall | 20 Precision | 20 Recall | 30 Precision | 30 Recall | +|----------------- |------------- |---------- |-------------- |----------- |-------------- |----------- |-------------- |----------- |-------------- |----------- | +| FAISS | 0.0015329215534271926 | 0.007664607767135963 | 0.0012403410938007953 | 0.012403410938007953 | 0.0010902998324539249 | 0.016354497486808874 | 0.001007777138713146 | 0.020155542774262923 | 0.0008869105670726116 | 0.02660731701217835 | +| BM 25 | 0.113256145439996 | 0.56628072719998 | 0.06176698592112831 | 0.6176698592112831 | 0.043105187259829786 | 0.6465778088974468 | 0.033317912425917126 | 0.6663582485183426 | 0.023139696749939567 | 0.694190902498187 | +| LABSE | 0.09462602215609292 | 0.47313011078046463 | 0.05531896271474655 | 0.5531896271474656 | 0.039858461076796116 | 0.5978769161519418 | 0.031433644252169345 | 0.6286728850433869 | 0.022339059908141407 | 0.6701717972442421 | +|slovakbert-sts-stsb | 0.08082472679986996 | 0.4041236339993498 | 0.04856210457875916 | 0.4856210457875916 | 0.03553810631256929 | 0.5330715946885394 | 0.028241516417014677 | 0.5648303283402936 | 0.020285578534096876 | 0.6085673560229063 | ### Dense Passage Retriever (DPR)