diff --git a/pages/students/2016/darius_lindvai/dp2021/README.md b/pages/students/2016/darius_lindvai/dp2021/README.md new file mode 100644 index 000000000..292ee04fe --- /dev/null +++ b/pages/students/2016/darius_lindvai/dp2021/README.md @@ -0,0 +1,13 @@ +## Update 09.04.2020 +- Upravil som vzorový zdrojový kód, ktorý riešil Named-Entity Recognition, tak, aby dopĺňal interpunkciu. +- Momentálne to funguje s ručne vpísanými trénovacími dátami a ručným "otagovaním", avšak iba pre bodku a otáznik. +- Keď som skúšal použiť dáta, kde bol aj otáznik, ale namiesto otáznika model doplňoval bodku. + +vysvetlenie zápisu dát: +- v texte som nahradil interpunciu slovami, resp. skratkami ('.' -> 'PER', ',' -> 'COM', '?' -> '.QUE') +- sekvencie slov som označil ako "S", nerozlišoval som slovné druhy +- interpunkčné znamienka som označil ako "C" (pre čiarku), "P" (pre bodku) a "Q" (pre otáznik) + +vysvetlenie výstupu: +- Prvý tensor je predikcia modelu pred trénovaním. +- Druhý tensor je predikcia po trénovaní. diff --git a/pages/students/2016/darius_lindvai/dp2021/punc.py b/pages/students/2016/darius_lindvai/dp2021/punc.py new file mode 100644 index 000000000..dbb5d8a79 --- /dev/null +++ b/pages/students/2016/darius_lindvai/dp2021/punc.py @@ -0,0 +1,221 @@ +import torch +import torch.autograd as autograd +import torch.nn as nn +import torch.optim as optim + +torch.manual_seed(1) + + + + + +def argmax(vec): + # return the argmax as a python int + _, idx = torch.max(vec, 1) + return idx.item() + + +def prepare_sequence(seq, to_ix): + idxs = [to_ix[w] for w in seq] + return torch.tensor(idxs, dtype=torch.long) + + +# Compute log sum exp in a numerically stable way for the forward algorithm +def log_sum_exp(vec): + max_score = vec[0, argmax(vec)] + max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1]) + return max_score + \ + torch.log(torch.sum(torch.exp(vec - max_score_broadcast))) + + + + + +class BiLSTM_CRF(nn.Module): + + def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim): + super(BiLSTM_CRF, self).__init__() + self.embedding_dim = embedding_dim + self.hidden_dim = hidden_dim + self.vocab_size = vocab_size + self.tag_to_ix = tag_to_ix + self.tagset_size = len(tag_to_ix) + + self.word_embeds = nn.Embedding(vocab_size, embedding_dim) + self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2, + num_layers=1, bidirectional=True) + + # Maps the output of the LSTM into tag space. + self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size) + + # Matrix of transition parameters. Entry i,j is the score of + # transitioning *to* i *from* j. + self.transitions = nn.Parameter( + torch.randn(self.tagset_size, self.tagset_size)) + + # These two statements enforce the constraint that we never transfer + # to the start tag and we never transfer from the stop tag + self.transitions.data[tag_to_ix[START_TAG], :] = -10000 + self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000 + + self.hidden = self.init_hidden() + + def init_hidden(self): + return (torch.randn(2, 1, self.hidden_dim // 2), + torch.randn(2, 1, self.hidden_dim // 2)) + + def _forward_alg(self, feats): + # Forward algorithm to compute the partition function + init_alphas = torch.full((1, self.tagset_size), -10000.) + # START_TAG has all of the score. + init_alphas[0][self.tag_to_ix[START_TAG]] = 0. + + # Wrap in a variable so that we will get automatic backprop + forward_var = init_alphas + + # Iterate through the sentence + for feat in feats: + alphas_t = [] # The forward tensors at this timestep + for next_tag in range(self.tagset_size): + # broadcast the emission score: it is the same regardless of the previous tag + emit_score = feat[next_tag].view(1, -1).expand(1, self.tagset_size) + # the ith entry of trans_score is the score of transitioning to next_tag from i + trans_score = self.transitions[next_tag].view(1, -1) + # The ith entry of next_tag_var is the value for the edge (i -> next_tag) before we do log-sum-exp + next_tag_var = forward_var + trans_score + emit_score + # The forward variable for this tag is log-sum-exp of all the scores. + alphas_t.append(log_sum_exp(next_tag_var).view(1)) + forward_var = torch.cat(alphas_t).view(1, -1) + terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]] + alpha = log_sum_exp(terminal_var) + return alpha + + def _get_lstm_features(self, sentence): + self.hidden = self.init_hidden() + embeds = self.word_embeds(sentence).view(len(sentence), 1, -1) + lstm_out, self.hidden = self.lstm(embeds, self.hidden) + lstm_out = lstm_out.view(len(sentence), self.hidden_dim) + lstm_feats = self.hidden2tag(lstm_out) + return lstm_feats + + def _score_sentence(self, feats, tags): + # Gives the score of a provided tag sequence + score = torch.zeros(1) + tags = torch.cat([torch.tensor([self.tag_to_ix[START_TAG]], dtype=torch.long), tags]) + for i, feat in enumerate(feats): + score = score + \ + self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]] + score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]] + return score + + def _viterbi_decode(self, feats): + backpointers = [] + + # Initialize the viterbi variables in log space + init_vvars = torch.full((1, self.tagset_size), -10000.) + init_vvars[0][self.tag_to_ix[START_TAG]] = 0 + + # forward_var at step i holds the viterbi variables for step i-1 + forward_var = init_vvars + for feat in feats: + bptrs_t = [] # holds the backpointers for this step + viterbivars_t = [] # holds the viterbi variables for this step + + for next_tag in range(self.tagset_size): + # next_tag_var[i] holds the viterbi variable for tag i at the + # previous step, plus the score of transitioning + # from tag i to next_tag. + # We don't include the emission scores here because the max + # does not depend on them (we add them in below) + next_tag_var = forward_var + self.transitions[next_tag] + best_tag_id = argmax(next_tag_var) + bptrs_t.append(best_tag_id) + viterbivars_t.append(next_tag_var[0][best_tag_id].view(1)) + # Now add in the emission scores, and assign forward_var to the set + # of viterbi variables we just computed + forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1) + backpointers.append(bptrs_t) + + # Transition to STOP_TAG + terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]] + best_tag_id = argmax(terminal_var) + path_score = terminal_var[0][best_tag_id] + + # Follow the back pointers to decode the best path. + best_path = [best_tag_id] + for bptrs_t in reversed(backpointers): + best_tag_id = bptrs_t[best_tag_id] + best_path.append(best_tag_id) + # Pop off the start tag (we dont want to return that to the caller) + start = best_path.pop() + assert start == self.tag_to_ix[START_TAG] # Sanity check + best_path.reverse() + return path_score, best_path + + def neg_log_likelihood(self, sentence, tags): + feats = self._get_lstm_features(sentence) + forward_score = self._forward_alg(feats) + gold_score = self._score_sentence(feats, tags) + return forward_score - gold_score + + def forward(self, sentence): + # Get the emission scores from the BiLSTM + lstm_feats = self._get_lstm_features(sentence) + + # Find the best path, given the features. + score, tag_seq = self._viterbi_decode(lstm_feats) + return score, tag_seq + + + + + +START_TAG = "" +STOP_TAG = "" +EMBEDDING_DIM = 5 +HIDDEN_DIM = 4 + +training_data = [( + "hovorí sa ,COM že ľudstvo postihuje nová epidémia ,COM šíriaca sa závratnou rýchlosťou .PER preto je dôležité vedieť čo to je ,COM ako jej predísť alebo ako ju odstrániť .PER".split(), + "S S C S S S S S C S S S S P S S S S S S S C S S S S S S S P".split() +), ( + "nárast obezity je spôsobený najmä spôsobom života .PER tuky zlepšujú chuť do jedla a dávajú lepší pocit sýtosti ,COM uvedomte si však ,COM že všetky tuky sa Vám ukladajú ,COM pokiaľ ich nespálite .PER".split(), + "S S S S S S S P S S S S S S S S S S C S S S C S S S S S S C S S S P".split() +)] + +word_to_ix = {} +for sentence, tags in training_data: + for word in sentence: + if word not in word_to_ix: + word_to_ix[word] = len(word_to_ix) + +tag_to_ix = {"S": 0, "C": 1, "P": 2, "E": 3, START_TAG: 4, STOP_TAG: 5} + +model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM) +optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4) + +with torch.no_grad(): + precheck_sent = prepare_sequence(training_data[0][0], word_to_ix) + precheck_tags = torch.tensor([tag_to_ix[t] for t in training_data[0][1]], dtype=torch.long) + print("Predicted output before training: ", model(precheck_sent)) + +for epoch in range(300): # normally you would NOT do 300 epochs, but this is small dataset + for sentence, tags in training_data: + # Step 1. Remember that Pytorch accumulates gradients. + # We need to clear them out before each instance + model.zero_grad() + + # Step 2. Get our inputs ready for the network, that is, turn them into Tensors of word indices. + sentence_in = prepare_sequence(sentence, word_to_ix) + targets = torch.tensor([tag_to_ix[t] for t in tags], dtype=torch.long) + + # Step 3. Run our forward pass. + loss = model.neg_log_likelihood(sentence_in, targets) + + # Step 4. Compute the loss, gradients, and update the parameters by calling optimizer.step() + loss.backward() + optimizer.step() + +with torch.no_grad(): + precheck_sent = prepare_sequence(training_data[0][0], word_to_ix) + print("Predicted output after training: ", model(precheck_sent)) diff --git a/pages/students/2016/darius_lindvai/dp2021/script1.py b/pages/students/2016/darius_lindvai/dp2021/script1.py new file mode 100755 index 000000000..1b9140fbb --- /dev/null +++ b/pages/students/2016/darius_lindvai/dp2021/script1.py @@ -0,0 +1,11 @@ +# coding: utf-8 +#!/usr/bin/python + +import codecs +import sys + +with codecs.open(sys.argv[2],'w') as out_txt: + with codecs.open(sys.argv[1],'r') as text: + for line in text: + line = line.replace('.','PER').replace(',','COM').replace('?','QUE') + out_txt.write(line)