Upload files to ''

This commit is contained in:
Dávid Omasta 2023-11-10 22:53:03 +00:00
parent 206ff3ce64
commit c5e55256db
6 changed files with 558 additions and 0 deletions

48
api.py Normal file
View File

@ -0,0 +1,48 @@
import torch
import uvicorn
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import MT5Tokenizer,AutoTokenizer, AutoModel ,T5ForConditionalGeneration
import warnings
import json
import random
import torch.nn.functional as F
#from ece import compute_ECE
from torch.utils.data import DataLoader
from functools import reduce
warnings.filterwarnings("ignore")
DEVICE ='cpu'
model_dir = "C:/Users/david/Desktop/T5_JUPYTER/qa_model"
tokenizer_dir = "C:/Users/david/Desktop/T5_JUPYTER/qa_tokenizer"
MODEL = T5ForConditionalGeneration.from_pretrained(model_dir, from_tf=False, return_dict=True).to(DEVICE)
print("Model succesfully loaded!")
TOKENIZER = AutoTokenizer.from_pretrained(tokenizer_dir, use_fast=True)
print("Tokenizer succesfully loaded!")
Q_LEN = 512
TOKENIZER.add_tokens('<sep>')
print('model loaded')
app = FastAPI()
# BASE MODEL
class InputData(BaseModel):
context: str
question: str
@app.post("/predict")
async def predict(input_data: InputData):
inputs = TOKENIZER(input_data.question, input_data.context, max_length=512, padding="max_length", truncation=True, add_special_tokens=True)
input_ids = torch.tensor(inputs["input_ids"], dtype=torch.long).to(DEVICE).unsqueeze(0)
attention_mask = torch.tensor(inputs["attention_mask"], dtype=torch.long).to(DEVICE).unsqueeze(0)
outputs = MODEL.generate(input_ids=input_ids, attention_mask=attention_mask, return_dict_in_generate=True,output_scores=True,max_length=512)
predicted_ids = outputs.sequences.numpy()
predicted_text = TOKENIZER.decode(predicted_ids[0], skip_special_tokens=True)
return {'prediction':predicted_text}
if __name__ == "__main__":
uvicorn.run(app, host="127.0.0.1", port=8090)

33
aplication.py Normal file
View File

@ -0,0 +1,33 @@
import requests
import json
import streamlit as st
def predict(context,question):
url = 'http://localhost:8090/predict'
data = {'context': context,'question': question}
json_data = json.dumps(data)
headers = {'Content-type': 'application/json'}
response = requests.post(url, data=json_data, headers=headers)
result = response.json()
return result
def main():
st.title("T5 model inference")
# Vytvoríme polia pre zadanie hodnôt
context = st.text_input("context:")
question = st.text_input("question:")
prediction = predict(context,question)
# Vytvoríme tlačidlo pre vykonanie akcie
if st.button("Execute"):
st.json({
'context': context,
'question': question,
'prediciton':prediction
})
if __name__ == "__main__":
main()

91
condadiplo.yaml Normal file
View File

@ -0,0 +1,91 @@
name: DIPLOcondaEnviroment
channels:
- defaults
dependencies:
- bzip2=1.0.8=he774522_0
- ca-certificates=2023.01.10=haa95532_0
- libffi=3.4.2=hd77b12b_6
- openssl=1.1.1t=h2bbff1b_0
- pip=23.0.1=py311haa95532_0
- python=3.11.2=h966fe2a_0
- setuptools=66.0.0=py311haa95532_0
- sqlite=3.41.2=h2bbff1b_0
- tk=8.6.12=h2bbff1b_0
- vc=14.2=h21ff451_1
- vs2015_runtime=14.27.29016=h5e58377_2
- wheel=0.38.4=py311haa95532_0
- xz=5.2.10=h8cc25b3_1
- zlib=1.2.13=h8cc25b3_0
- pip:
- altair==4.2.2
- anyio==3.6.2
- attrs==23.1.0
- blinker==1.6.2
- cachetools==5.3.0
- certifi==2022.12.7
- charset-normalizer==3.1.0
- click==8.1.3
- colorama==0.4.6
- comtypes==1.1.14
- decorator==5.1.1
- entrypoints==0.4
- fastapi==0.92.0
- filelock==3.11.0
- gitdb==4.0.10
- gitpython==3.1.31
- h11==0.14.0
- huggingface-hub==0.12.1
- idna==3.4
- importlib-metadata==6.4.1
- jinja2==3.1.2
- jsonschema==4.17.3
- markdown-it-py==2.2.0
- markupsafe==2.1.2
- mdurl==0.1.2
- mouseinfo==0.1.3
- mpmath==1.3.0
- networkx==3.1
- numpy==1.24.2
- packaging==23.1
- pandas==1.5.3
- pillow==9.5.0
- protobuf==3.20.3
- pyarrow==11.0.0
- pydantic==1.10.7
- pydeck==0.8.1b0
- pygments==2.15.0
- pympler==1.0.1
- pyperclip==1.8.2
- pyrsistent==0.19.3
- python-dateutil==2.8.2
- pytz==2023.3
- pytz-deprecation-shim==0.1.0.post0
- pywin32==305
- pywinauto==0.6.8
- pyyaml==6.0
- regex==2023.3.23
- requests==2.28.2
- rich==13.3.4
- six==1.16.0
- smmap==5.0.0
- sniffio==1.3.0
- starlette==0.25.0
- streamlit==1.21.0
- sympy==1.11.1
- tokenizers==0.13.2
- toml==0.10.2
- toolz==0.12.0
- torch==2.0.0
- torchaudio==2.0.1
- torchvision==0.15.1
- tornado==6.2
- tqdm==4.65.0
- transformers==4.26.1
- typing-extensions==4.5.0
- tzdata==2023.3
- tzlocal==4.3
- urllib3==1.26.15
- uvicorn==0.20.0
- validators==0.20.0
- watchdog==3.0.0
- zipp==3.15.0

72
requirements.txt Normal file
View File

@ -0,0 +1,72 @@
altair==4.2.2
anyio==3.6.2
attrs==23.1.0
blinker==1.6.2
cachetools==5.3.0
certifi==2022.12.7
charset-normalizer==3.1.0
click==8.1.3
colorama==0.4.6
comtypes==1.1.14
decorator==5.1.1
entrypoints==0.4
fastapi==0.92.0
filelock==3.11.0
gitdb==4.0.10
GitPython==3.1.31
h11==0.14.0
huggingface-hub==0.12.1
idna==3.4
importlib-metadata==6.4.1
Jinja2==3.1.2
jsonschema==4.17.3
markdown-it-py==2.2.0
MarkupSafe==2.1.2
mdurl==0.1.2
MouseInfo==0.1.3
mpmath==1.3.0
networkx==3.1
numpy==1.24.2
packaging==23.1
pandas==1.5.3
Pillow==9.5.0
protobuf==3.20.3
pyarrow==11.0.0
pydantic==1.10.7
pydeck==0.8.1b0
Pygments==2.15.0
Pympler==1.0.1
pyperclip==1.8.2
pyrsistent==0.19.3
python-dateutil==2.8.2
pytz==2023.3
pytz-deprecation-shim==0.1.0.post0
pywin32==305
pywinauto==0.6.8
PyYAML==6.0
regex==2023.3.23
requests==2.28.2
rich==13.3.4
six==1.16.0
smmap==5.0.0
sniffio==1.3.0
starlette==0.25.0
streamlit==1.21.0
sympy==1.11.1
tokenizers==0.13.2
toml==0.10.2
toolz==0.12.0
torch==2.0.0
torchaudio==2.0.1
torchvision==0.15.1
tornado==6.2
tqdm==4.65.0
transformers==4.26.1
typing_extensions==4.5.0
tzdata==2023.3
tzlocal==4.3
urllib3==1.26.15
uvicorn==0.20.0
validators==0.20.0
watchdog==3.0.0
zipp==3.15.0

175
train.py Normal file
View File

@ -0,0 +1,175 @@
import torch
import json
from tqdm import tqdm
import torch.nn as nn
from torch.optim import Adam
import nltk
import spacy
import string
import evaluate # Bleu
from torch.utils.data import Dataset, DataLoader, RandomSampler
import pandas as pd
import numpy as np
import transformers
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
#from transformers import T5Tokenizer, T5Model, T5ForConditionalGeneration, T5TokenizerFast
from transformers import AutoTokenizer, T5ForConditionalGeneration
import warnings
warnings.filterwarnings("ignore")
print("Imports succesfully done")
DEVICE ='cuda:0'
#TOKENIZER = AutoTokenizer.from_pretrained("ApoTro/slovak-t5-small")
TOKENIZER=AutoTokenizer.from_pretrained('google/mt5-small')
#TOKENIZER=AutoTokenizer.from_pretrained('google/mt5-base')
TOKENIZER.add_tokens('<sep>')
#MODEL = T5ForConditionalGeneration.from_pretrained("ApoTro/slovak-t5-small").to(DEVICE)
MODEL = T5ForConditionalGeneration.from_pretrained("google/mt5-small").to(DEVICE)
#MODEL = T5ForConditionalGeneration.from_pretrained("google/mt5-base").to(DEVICE)
#pridam token
MODEL.resize_token_embeddings(len(TOKENIZER))
#lr = learning rate = 10-5
OPTIMIZER = Adam(MODEL.parameters(), lr=0.00001)
Q_LEN = 256 # Question Length
T_LEN = 32 # Target Length
BATCH_SIZE = 4 #dávka dát
print("Model succesfully loaded")
path_train = '/home/omasta/T5_JUPYTER/skquad-221017/train-v1.json'
with open(path_train) as f:
data = json.load(f)
def prepare_data(data):
articles = []
for article in data["data"]:
for paragraph in article["paragraphs"]:
for qa in paragraph["qas"]:
question = qa["question"]
answer = qa["answers"][0]["text"]
#input_ = 'generuj_odpoved : ' + paragraph["context"] + ' <sep>' + question + ' <sep>'
inputs = {"input": paragraph["context"]+'<sep>'+question, "answer": answer}
#inputs = {'context': input_ ,'answer':answer}
articles.append(inputs)
return articles
prepared_data = prepare_data(data)
print(prepared_data[0])
#Dataframe
data = pd.DataFrame(prepared_data)
class QA_Dataset(Dataset):
def __init__(self, tokenizer, dataframe, q_len, t_len):
self.tokenizer = tokenizer
self.q_len = q_len
self.t_len = t_len
self.data = dataframe
self.input = self.data['input']
#self.context = self.data["context"]
self.answer = self.data['answer']
def __len__(self):
return len(self.questions)
def __getitem__(self, idx):
input = self.input[idx]
answer = self.answer[idx]
input_tokenized = self.tokenizer(input, max_length=self.q_len, padding="max_length",
truncation=True, pad_to_max_length=True, add_special_tokens=True)
answer_tokenized = self.tokenizer(answer, max_length=self.t_len, padding="max_length",
truncation=True, pad_to_max_length=True, add_special_tokens=True)
labels = torch.tensor(answer_tokenized["input_ids"], dtype=torch.long)
labels[labels == 0] = -100
return {
"input_ids": torch.tensor(input_tokenized["input_ids"], dtype=torch.long),
"attention_mask": torch.tensor(input_tokenized["attention_mask"], dtype=torch.long),
"labels": labels,
"decoder_attention_mask": torch.tensor(answer_tokenized["attention_mask"], dtype=torch.long)
}
##DATA LOADERS
train_data, val_data = train_test_split(data, test_size=0.2, random_state=42)
train_sampler = RandomSampler(train_data.index)
val_sampler = RandomSampler(val_data.index)
qa_dataset = QA_Dataset(TOKENIZER, data, Q_LEN, T_LEN)
train_loader = DataLoader(qa_dataset, batch_size=BATCH_SIZE, sampler=train_sampler)
val_loader = DataLoader(qa_dataset, batch_size=BATCH_SIZE, sampler=val_sampler)
print("Loaders working fine")
### TRAINING (46MINS ACCORDING THE V1_DATA)
train_loss = 0
val_loss = 0
train_batch_count = 0
val_batch_count = 0
for epoch in range(4):
MODEL.train()
for batch in tqdm(train_loader, desc="Training batches"):
input_ids = batch["input_ids"].to(DEVICE)
attention_mask = batch["attention_mask"].to(DEVICE)
labels = batch["labels"].to(DEVICE)
decoder_attention_mask = batch["decoder_attention_mask"].to(DEVICE)
outputs = MODEL(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels,
decoder_attention_mask=decoder_attention_mask
)
OPTIMIZER.zero_grad()
outputs.loss.backward()
OPTIMIZER.step()
train_loss += outputs.loss.item()
train_batch_count += 1
#Evaluation
MODEL.eval()
for batch in tqdm(val_loader, desc="Validation batches"):
input_ids = batch["input_ids"].to(DEVICE)
attention_mask = batch["attention_mask"].to(DEVICE)
labels = batch["labels"].to(DEVICE)
decoder_attention_mask = batch["decoder_attention_mask"].to(DEVICE)
outputs = MODEL(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels,
decoder_attention_mask=decoder_attention_mask
)
OPTIMIZER.zero_grad()
outputs.loss.backward()
OPTIMIZER.step()
val_loss += outputs.loss.item()
val_batch_count += 1
print(f"{epoch+1}/{2} -> Train loss: {train_loss / train_batch_count}\tValidation loss: {val_loss/val_batch_count}")
print("Training done succesfully")
## SAVE FINE_TUNED MODEL
MODEL.save_pretrained("qa_model_mT5_small")
TOKENIZER.save_pretrained('qa_tokenizer_mT5_small')

139
usecase.py Normal file
View File

@ -0,0 +1,139 @@
## IMPORT NESSESARY EQUIPMENTS
from transformers import T5ForConditionalGeneration, T5Tokenizer,AutoTokenizer
import torch
import evaluate # Bleu
import json
import random
import statistics
from sklearn.metrics import precision_score, recall_score, f1_score
## TURN WARNINGS OFF
import warnings
warnings.filterwarnings("ignore")
##13/03/23 added
from rouge import Rouge
# Názov modelu
DEVICE ='cuda:0'
#T5 MODEL
#model_name = 'T5_SK_model'
#model_dir = "/home/omasta/T5_JUPYTER/qa_model"
#tokenizer_dir = "/home/omasta/T5_JUPYTER/qa_tokenizer"
#mT5 SMALL MODEL
model_name = 'mT5_SMALL'
model_dir = '/home/omasta/T5_JUPYTER/qa_model_mT5_small'
tokenizer_dir = '/home/omasta/T5_JUPYTER/qa_tokenizer_mT5_small'
#Načítanie modelu z adresára
MODEL = T5ForConditionalGeneration.from_pretrained(model_dir, from_tf=False, return_dict=True).to(DEVICE)
print("Model succesfully loaded!")
TOKENIZER = AutoTokenizer.from_pretrained(tokenizer_dir, use_fast=True)
print("Tokenizer succesfully loaded!")
Q_LEN = 512
TOKENIZER.add_tokens('<sep>')
MODEL.resize_token_embeddings(len(TOKENIZER))
def predict_answer(data, ref_answer=None,random=None):
predictions=[]
for i in data:
inputs = TOKENIZER(i['input'], max_length=Q_LEN, padding="max_length", truncation=True, add_special_tokens=True)
input_ids = torch.tensor(inputs["input_ids"], dtype=torch.long).to(DEVICE).unsqueeze(0)
attention_mask = torch.tensor(inputs["attention_mask"], dtype=torch.long).to(DEVICE).unsqueeze(0)
outputs = MODEL.generate(input_ids=input_ids, attention_mask=attention_mask)
predicted_answer = TOKENIZER.decode(outputs.flatten(), skip_special_tokens=True)
ref_answer = i['answer'].lower()
#print(ref_answer)
if ref_answer:
# Load the Bleu metric
bleu = evaluate.load("google_bleu")
#print('debug')
#precision = list(precision_score(ref_answer, predicted_answer))
#recall = list(recall_score(ref_answer, predicted_answer))
#f1 = list(f1_score(ref_answer, predicted_answer))
score = bleu.compute(predictions=[predicted_answer],
references=[ref_answer])
predictions.append({'prediction':predicted_answer,'ref_answer':ref_answer,'score':score['google_bleu']})
return predictions
def prepare_data(data):
articles = []
for article in data["data"]:
for paragraph in article["paragraphs"]:
for qa in paragraph["qas"]:
question = qa["question"]
answer = qa["answers"][0]["text"]
inputs = {"input": paragraph["context"]+ "<sep>" + question, "answer": answer}
articles.append(inputs)
return articles
dev_data_path = '/home/omasta/T5_JUPYTER/skquad-221017/dev-v1.json'
with open(dev_data_path,'r') as f:
data=json.load(f)
#print('data imported')
dev_data = prepare_data(data)
#print('data prepared')
print(f'Number of dev samples {len(dev_data)}')
print(dev_data[0])
bleu_score = []
precisions=[]
f1_scores=[]
recall_scores=[]
rouge_1 = []
rouge_2 = []
#X = 150
evaluate = predict_answer(dev_data)
rouge = Rouge()
for item in evaluate:
bleu_score.append(item['score'])
try:
#scores = rouge.get_scores(item['prediction'], item['ref_answer'], avg=True)
precision=precision_score(list(item['ref_answer']), list(item['prediction']),average='macro')
recall=recall_score(list(item['ref_answer']), list(item['prediction']),average='macro')
f1=f1_score(list(item['ref_answer']), list(item['prediction']),average='macro')
except ValueError:
precision=0
recall=0
f1=0
precisions.append(precision)
f1_scores.append(f1)
recall_scores.append(recall)
def rouge_eval(dict_x):
rouge = Rouge()
rouge_scores=[]
for item in dict_x:
if item['prediction'] and item['ref_answer']:
rouge_score = rouge.get_scores(item['prediction'], item['ref_answer'])
rouge_scores.append(rouge_score)
else:
continue
return rouge_scores
print(f'VYHODNOTENIE VYSLEDKOV : ------------------------')
#print(evaluate)
#bleu_score_total = statistics.mean(bleu_score)
#recall_score_total= statistics.mean(recall_scores)
#f1_score_total = statistics.mean(f1_scores)
#precision_total = statistics.mean(precisions)
#print(f'Bleu_score of model {model_name} : ',bleu_score_total)
#print(f'Recall of model {model_name}: ',recall_score_total)
#print(f'F1 of model {model_name} : ', f1_score_total)
#print(f'Precision of model {model_name}: :',precision_total)
#print(rouge_eval(evaluate))
print(f'{model_name} results')
rouge_scores = rouge_eval(evaluate)
rouge_values = [score[0]['rouge-1']['f'] for score in rouge_scores]
mean_rouge_score = statistics.mean(rouge_values)
print(f'Rouge:{mean_rouge_score}')
rouge2_values = [score[0]['rouge-2']['f'] for score in rouge_scores]
mean_rouge_score =statistics.mean(rouge2_values)
print(f'Rouge-2:{mean_rouge_score}')