---
title: Question Answering
published: true
taxonomy:
    category: [project]
    tag: [annotation,question-answer,nlp]
    author: Daniel Hladek
---
# Question Answering

- [Project repository](https://git.kemt.fei.tuke.sk/dano/annotation) (private)
- [Annotation Manual for question annotation](navod)
- [Annotation Manual for validations](validacie)
- [Annotation Manual for unanswerable questions](nezodpovedatelne)
- [Summary database application](https://app.question.tukekemt,xyz)


## Project Description

- Create a clone of [SQuaD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) in the Slovak language
- Setup annotation infrastructure with [Prodigy](https://prodi.gy/)
- Perform and evaluate annotations of [Wikipedia data](https://dumps.wikimedia.org/backup-index.html).

Auxiliary tasks:

- Consider using machine translation 
- Train and evaluate Question Answering model

## People

- Daniel Hládek (responsible researcher).
- Tomáš Kuchárik (student, help with web app).
- Ján Staš (BERT model).
- [Ondrej Megela](/students/2018/ondrej_megela), [Oleh Bilykh](/students/2018/oleh_bilykh), Matej Čarňanský (auxiliary tasks).
- other students and annotators (annotations).

## Finished Tasks

### Raw Data Preparation

Input: Wikipedia

Output: a set of paragraphs

1. Obtaining and parsing of wikipedia dump
1. Selecting feasible paragraphs

Done:

- Wiki parsing script (Daniel Hládek)
- PageRank script (Daniel Hládek)
- selection of paragraphs: select all good paragraphs and shuffle
- fix minor errors


To be done:

- Select the largest articles (to be compatible with squad).

Notes:

- PageRank Causes bias to geography, random selection might be the best
- [75 best articles](https://sk.wikipedia.org/wiki/Wikip%C3%A9dia:Zoznam_najlep%C5%A1%C3%ADch_%C4%8Dl%C3%A1nkov)
- [167 good articles](https://sk.wikipedia.org/wiki/Wikip%C3%A9dia:Zoznam_dobr%C3%BDch_%C4%8Dl%C3%A1nkov)
- [Wiki Facts](https://sk.wikipedia.org/wiki/Wikip%C3%A9dia:Zauj%C3%ADmavosti)


### Annotation Manual

Output: Recommendations for annotators

Done:

- Web Page for annotators  (Daniel Hládek)
- Modivation video (Daniel Hládek)
- Video with instructions (Daniel Hládek)
bn application?

### Question Annotation

An annotation recipe for Prodigy

Input: A set of paragraphs

Output: 5 questions for each paragraph

Done: 

- a data preparation script (Daniel Hládek)
- annotation recipe for Prodigy (Daniel Hládek)
- deployment at [question.tukekemt.xyz](http://question.tukekemt.xyz) (only from tuke) (Daniel Hládek)
- answer annotation together with question (Daniel Hládek)
- prepare final input paragraphs (dataset)

### Annotation Web Application

Annotation work summary, web applicatiobn

Input: Database of annotations

Output: Summary of work performed by each annotator

Done:

- application template (Tomáš Kuchárik)
- Dockerfile (Daniel Hládek)
- web application for annotation analysis in Flask (Tomáš Kuchárik, Daniel Hládek)
- application deployment (Daniel Hládek)
- extract annotations from question annotation in squad format (Daniel Hladek)

### Annotation Validation

Input: annnotated questions and paragraph

Output: good annotated questions

Done:

- Recipe for validations (binary annotation for paragraphs, question and answers, text fields for correction of question and answer). (Daniel Hládek)
- Deployment 

## Tasks in progress

### Unanswerable question annotation

Input: validated questions and answers

Output: Unanswerable questions and answers

Done:

- Annotation manual
- Annotation interface
- Database schema modifications
- Modification of the database application
- Export of validations

In progress:

- Annotaion process optimization

### Final Data Export

Input: Validations and unanswerable questions

Output: Final database in SQUAD format

Done:

- Preliminary export script

To be done:

- Final export script
- Database web visualization
- Prepare development set 

## Resources

### Bibligraphy

- Reading Wikipedia to Answer Open-Domain Questions, Danqi Chen, Adam Fisch, Jason Weston, Antoine Bordes
Facebook Research
- SQuAD: 100,000+ Questions for Machine Comprehension of Text https://arxiv.org/abs/1606.05250
- [WDaqua](https://wdaqua.eu/our-work/) publications

### Existing Datasets

- [Squad](https://rajpurkar.github.io/SQuAD-explorer/)  The Stanford Question Answering Dataset(SQuAD)  (Rajpurkar  et  al.,  2016) 
- [WebQuestions](https://github.com/brmson/dataset-factoid-webquestions)
- [Freebase](https://en.wikipedia.org/wiki/Freebase)

## Intern tasks

Week 1: Intro

- Get acquainted with the project and Squad Database
- Download the database and study the bibliography
- Study [Prodigy annnotation](https://Prodi.gy) tool
- Read [SQuAD: 100,000+ Questions for Machine Comprehension of Text](https://arxiv.org/abs/1606.05250)
- Read [Know What You Don't Know: Unanswerable Questions for SQuAD](https://arxiv.org/abs/1806.03822)

Output:

- Short report

Week 2-4 The System

Select and train a working question answering system

Output:

- a deployment script with comments for a selected question answering system 

Week 5-7 The Model

Take a working training recipe (can use English data), a script with comments or Jupyter Notebook

Output:

- a trained model
- evaluation of the model (if possible)


### Question Answering Model

Training the model with annotated data

Input: An annotated QA database

Output: An evaluated model for QA

To be done:

- Selecting existing modelling approach
- Evaluation set selection
- Model evaluation
- Supporting the annotation with the model (pre-selecting answers)

In progress:

- Preliminary model (Ján Staš and Matej Čarňanský)