forked from KEMT/zpwiki
update
This commit is contained in:
parent
bf640d92f7
commit
417a3c9319
pages/students/2016/darius_lindvai/dp2021
13
pages/students/2016/darius_lindvai/dp2021/README.md
Normal file
13
pages/students/2016/darius_lindvai/dp2021/README.md
Normal file
@ -0,0 +1,13 @@
|
||||
## Update 09.04.2020
|
||||
- Upravil som vzorový zdrojový kód, ktorý riešil Named-Entity Recognition, tak, aby dopĺňal interpunkciu.
|
||||
- Momentálne to funguje s ručne vpísanými trénovacími dátami a ručným "otagovaním", avšak iba pre bodku a otáznik.
|
||||
- Keď som skúšal použiť dáta, kde bol aj otáznik, ale namiesto otáznika model doplňoval bodku.
|
||||
|
||||
vysvetlenie zápisu dát:
|
||||
- v texte som nahradil interpunciu slovami, resp. skratkami ('.' -> 'PER', ',' -> 'COM', '?' -> '.QUE')
|
||||
- sekvencie slov som označil ako "S", nerozlišoval som slovné druhy
|
||||
- interpunkčné znamienka som označil ako "C" (pre čiarku), "P" (pre bodku) a "Q" (pre otáznik)
|
||||
|
||||
vysvetlenie výstupu:
|
||||
- Prvý tensor je predikcia modelu pred trénovaním.
|
||||
- Druhý tensor je predikcia po trénovaní.
|
221
pages/students/2016/darius_lindvai/dp2021/punc.py
Normal file
221
pages/students/2016/darius_lindvai/dp2021/punc.py
Normal file
@ -0,0 +1,221 @@
|
||||
import torch
|
||||
import torch.autograd as autograd
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
|
||||
torch.manual_seed(1)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def argmax(vec):
|
||||
# return the argmax as a python int
|
||||
_, idx = torch.max(vec, 1)
|
||||
return idx.item()
|
||||
|
||||
|
||||
def prepare_sequence(seq, to_ix):
|
||||
idxs = [to_ix[w] for w in seq]
|
||||
return torch.tensor(idxs, dtype=torch.long)
|
||||
|
||||
|
||||
# Compute log sum exp in a numerically stable way for the forward algorithm
|
||||
def log_sum_exp(vec):
|
||||
max_score = vec[0, argmax(vec)]
|
||||
max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1])
|
||||
return max_score + \
|
||||
torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class BiLSTM_CRF(nn.Module):
|
||||
|
||||
def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim):
|
||||
super(BiLSTM_CRF, self).__init__()
|
||||
self.embedding_dim = embedding_dim
|
||||
self.hidden_dim = hidden_dim
|
||||
self.vocab_size = vocab_size
|
||||
self.tag_to_ix = tag_to_ix
|
||||
self.tagset_size = len(tag_to_ix)
|
||||
|
||||
self.word_embeds = nn.Embedding(vocab_size, embedding_dim)
|
||||
self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2,
|
||||
num_layers=1, bidirectional=True)
|
||||
|
||||
# Maps the output of the LSTM into tag space.
|
||||
self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size)
|
||||
|
||||
# Matrix of transition parameters. Entry i,j is the score of
|
||||
# transitioning *to* i *from* j.
|
||||
self.transitions = nn.Parameter(
|
||||
torch.randn(self.tagset_size, self.tagset_size))
|
||||
|
||||
# These two statements enforce the constraint that we never transfer
|
||||
# to the start tag and we never transfer from the stop tag
|
||||
self.transitions.data[tag_to_ix[START_TAG], :] = -10000
|
||||
self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000
|
||||
|
||||
self.hidden = self.init_hidden()
|
||||
|
||||
def init_hidden(self):
|
||||
return (torch.randn(2, 1, self.hidden_dim // 2),
|
||||
torch.randn(2, 1, self.hidden_dim // 2))
|
||||
|
||||
def _forward_alg(self, feats):
|
||||
# Forward algorithm to compute the partition function
|
||||
init_alphas = torch.full((1, self.tagset_size), -10000.)
|
||||
# START_TAG has all of the score.
|
||||
init_alphas[0][self.tag_to_ix[START_TAG]] = 0.
|
||||
|
||||
# Wrap in a variable so that we will get automatic backprop
|
||||
forward_var = init_alphas
|
||||
|
||||
# Iterate through the sentence
|
||||
for feat in feats:
|
||||
alphas_t = [] # The forward tensors at this timestep
|
||||
for next_tag in range(self.tagset_size):
|
||||
# broadcast the emission score: it is the same regardless of the previous tag
|
||||
emit_score = feat[next_tag].view(1, -1).expand(1, self.tagset_size)
|
||||
# the ith entry of trans_score is the score of transitioning to next_tag from i
|
||||
trans_score = self.transitions[next_tag].view(1, -1)
|
||||
# The ith entry of next_tag_var is the value for the edge (i -> next_tag) before we do log-sum-exp
|
||||
next_tag_var = forward_var + trans_score + emit_score
|
||||
# The forward variable for this tag is log-sum-exp of all the scores.
|
||||
alphas_t.append(log_sum_exp(next_tag_var).view(1))
|
||||
forward_var = torch.cat(alphas_t).view(1, -1)
|
||||
terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
|
||||
alpha = log_sum_exp(terminal_var)
|
||||
return alpha
|
||||
|
||||
def _get_lstm_features(self, sentence):
|
||||
self.hidden = self.init_hidden()
|
||||
embeds = self.word_embeds(sentence).view(len(sentence), 1, -1)
|
||||
lstm_out, self.hidden = self.lstm(embeds, self.hidden)
|
||||
lstm_out = lstm_out.view(len(sentence), self.hidden_dim)
|
||||
lstm_feats = self.hidden2tag(lstm_out)
|
||||
return lstm_feats
|
||||
|
||||
def _score_sentence(self, feats, tags):
|
||||
# Gives the score of a provided tag sequence
|
||||
score = torch.zeros(1)
|
||||
tags = torch.cat([torch.tensor([self.tag_to_ix[START_TAG]], dtype=torch.long), tags])
|
||||
for i, feat in enumerate(feats):
|
||||
score = score + \
|
||||
self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]]
|
||||
score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]]
|
||||
return score
|
||||
|
||||
def _viterbi_decode(self, feats):
|
||||
backpointers = []
|
||||
|
||||
# Initialize the viterbi variables in log space
|
||||
init_vvars = torch.full((1, self.tagset_size), -10000.)
|
||||
init_vvars[0][self.tag_to_ix[START_TAG]] = 0
|
||||
|
||||
# forward_var at step i holds the viterbi variables for step i-1
|
||||
forward_var = init_vvars
|
||||
for feat in feats:
|
||||
bptrs_t = [] # holds the backpointers for this step
|
||||
viterbivars_t = [] # holds the viterbi variables for this step
|
||||
|
||||
for next_tag in range(self.tagset_size):
|
||||
# next_tag_var[i] holds the viterbi variable for tag i at the
|
||||
# previous step, plus the score of transitioning
|
||||
# from tag i to next_tag.
|
||||
# We don't include the emission scores here because the max
|
||||
# does not depend on them (we add them in below)
|
||||
next_tag_var = forward_var + self.transitions[next_tag]
|
||||
best_tag_id = argmax(next_tag_var)
|
||||
bptrs_t.append(best_tag_id)
|
||||
viterbivars_t.append(next_tag_var[0][best_tag_id].view(1))
|
||||
# Now add in the emission scores, and assign forward_var to the set
|
||||
# of viterbi variables we just computed
|
||||
forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1)
|
||||
backpointers.append(bptrs_t)
|
||||
|
||||
# Transition to STOP_TAG
|
||||
terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
|
||||
best_tag_id = argmax(terminal_var)
|
||||
path_score = terminal_var[0][best_tag_id]
|
||||
|
||||
# Follow the back pointers to decode the best path.
|
||||
best_path = [best_tag_id]
|
||||
for bptrs_t in reversed(backpointers):
|
||||
best_tag_id = bptrs_t[best_tag_id]
|
||||
best_path.append(best_tag_id)
|
||||
# Pop off the start tag (we dont want to return that to the caller)
|
||||
start = best_path.pop()
|
||||
assert start == self.tag_to_ix[START_TAG] # Sanity check
|
||||
best_path.reverse()
|
||||
return path_score, best_path
|
||||
|
||||
def neg_log_likelihood(self, sentence, tags):
|
||||
feats = self._get_lstm_features(sentence)
|
||||
forward_score = self._forward_alg(feats)
|
||||
gold_score = self._score_sentence(feats, tags)
|
||||
return forward_score - gold_score
|
||||
|
||||
def forward(self, sentence):
|
||||
# Get the emission scores from the BiLSTM
|
||||
lstm_feats = self._get_lstm_features(sentence)
|
||||
|
||||
# Find the best path, given the features.
|
||||
score, tag_seq = self._viterbi_decode(lstm_feats)
|
||||
return score, tag_seq
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
START_TAG = "<START>"
|
||||
STOP_TAG = "<STOP>"
|
||||
EMBEDDING_DIM = 5
|
||||
HIDDEN_DIM = 4
|
||||
|
||||
training_data = [(
|
||||
"hovorí sa ,COM že ľudstvo postihuje nová epidémia ,COM šíriaca sa závratnou rýchlosťou .PER preto je dôležité vedieť čo to je ,COM ako jej predísť alebo ako ju odstrániť .PER".split(),
|
||||
"S S C S S S S S C S S S S P S S S S S S S C S S S S S S S P".split()
|
||||
), (
|
||||
"nárast obezity je spôsobený najmä spôsobom života .PER tuky zlepšujú chuť do jedla a dávajú lepší pocit sýtosti ,COM uvedomte si však ,COM že všetky tuky sa Vám ukladajú ,COM pokiaľ ich nespálite .PER".split(),
|
||||
"S S S S S S S P S S S S S S S S S S C S S S C S S S S S S C S S S P".split()
|
||||
)]
|
||||
|
||||
word_to_ix = {}
|
||||
for sentence, tags in training_data:
|
||||
for word in sentence:
|
||||
if word not in word_to_ix:
|
||||
word_to_ix[word] = len(word_to_ix)
|
||||
|
||||
tag_to_ix = {"S": 0, "C": 1, "P": 2, "E": 3, START_TAG: 4, STOP_TAG: 5}
|
||||
|
||||
model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM)
|
||||
optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4)
|
||||
|
||||
with torch.no_grad():
|
||||
precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
|
||||
precheck_tags = torch.tensor([tag_to_ix[t] for t in training_data[0][1]], dtype=torch.long)
|
||||
print("Predicted output before training: ", model(precheck_sent))
|
||||
|
||||
for epoch in range(300): # normally you would NOT do 300 epochs, but this is small dataset
|
||||
for sentence, tags in training_data:
|
||||
# Step 1. Remember that Pytorch accumulates gradients.
|
||||
# We need to clear them out before each instance
|
||||
model.zero_grad()
|
||||
|
||||
# Step 2. Get our inputs ready for the network, that is, turn them into Tensors of word indices.
|
||||
sentence_in = prepare_sequence(sentence, word_to_ix)
|
||||
targets = torch.tensor([tag_to_ix[t] for t in tags], dtype=torch.long)
|
||||
|
||||
# Step 3. Run our forward pass.
|
||||
loss = model.neg_log_likelihood(sentence_in, targets)
|
||||
|
||||
# Step 4. Compute the loss, gradients, and update the parameters by calling optimizer.step()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
with torch.no_grad():
|
||||
precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
|
||||
print("Predicted output after training: ", model(precheck_sent))
|
11
pages/students/2016/darius_lindvai/dp2021/script1.py
Executable file
11
pages/students/2016/darius_lindvai/dp2021/script1.py
Executable file
@ -0,0 +1,11 @@
|
||||
# coding: utf-8
|
||||
#!/usr/bin/python
|
||||
|
||||
import codecs
|
||||
import sys
|
||||
|
||||
with codecs.open(sys.argv[2],'w') as out_txt:
|
||||
with codecs.open(sys.argv[1],'r') as text:
|
||||
for line in text:
|
||||
line = line.replace('.','PER').replace(',','COM').replace('?','QUE')
|
||||
out_txt.write(line)
|
Loading…
Reference in New Issue
Block a user