778 lines
26 KiB
Python
778 lines
26 KiB
Python
import pymongo
|
|
import pymongo.errors
|
|
import trafilatura
|
|
import trafilatura.feeds
|
|
import trafilatura.sitemaps
|
|
import trafilatura.spider
|
|
import trafilatura.utils
|
|
import trafilatura.external
|
|
import sys
|
|
import courlan
|
|
import urllib
|
|
from datetime import datetime as dat
|
|
import datetime
|
|
import click
|
|
import logging as LOGGER
|
|
import os
|
|
import pprint
|
|
import re
|
|
import time
|
|
import collections
|
|
import math
|
|
import random
|
|
import hashlib
|
|
from bs4 import BeautifulSoup
|
|
import urllib.parse
|
|
import os.path
|
|
import binascii
|
|
import json
|
|
|
|
# database options
|
|
CONNECTION=os.getenv("SUCKER_CONNECTION","mongodb://root:example@localhost:27017/")
|
|
DBNAME=os.getenv("SUCKER_DBNAME","crawler")
|
|
# retrieving filter
|
|
BATCH_SIZE = int(os.getenv("SUCKER_BATCH_SIZE","10"))
|
|
MIN_FILE_SIZE=int(os.getenv("SUCKER_MIN_FILE_SIZE","300"))
|
|
MAX_FILE_SIZE=int(os.getenv("SUCKER_MAX_FILE_SIZE","10000000"))
|
|
# document originality filter
|
|
MIN_TEXT_SIZE=int(os.getenv("SUCKER_MIN_TEXT_SIZE","200"))
|
|
CHECK_PARAGRAPH_SIZE=int(os.getenv("SUCKER_CHECK_PARAGRAPH_SIZE","150"))
|
|
TEXT_TRASH_RATIO=float(os.getenv("SUCKER_TEXT_TRASH_RATIO","0.6"))
|
|
# link and domain sampling
|
|
DISCOVER_LINK_RATIO = float(os.getenv("SUCKER_DISCOVER_LINK_RATIO","0.3"))
|
|
SAMPLE_SET_SIZE = int(os.getenv("SUCKER_DISCOVER_LINK_RATIO","10000"))
|
|
CLASSIFIER_SET_SIZE = int(os.getenv("SUCKER_DISCOVER_LINK_RATIO","200"))
|
|
# link filter
|
|
LANGUAGE= os.getenv("SUCKER_LANGUAGE","sk")
|
|
DOMAIN = os.getenv("SUCKER_DOMAIN","sk")
|
|
STOP_PATHS=os.getenv("SUCKER_STOP_PATHS","xml,rss,login,admin").split(",")
|
|
|
|
def get_bs_links(link,html):
|
|
# Extrakcia linkov zo stranky
|
|
bs = BeautifulSoup(html, "lxml")
|
|
base = link
|
|
if bs.base is not None and "href" in bs.base.attrs:
|
|
base = bs.base["href"]
|
|
base = urllib.parse.urlparse(courlan.normalize_url(base))
|
|
|
|
links = set()
|
|
# Normalizacia linkov
|
|
for l in bs.find_all("a", href=True):
|
|
if "rel" in l.attrs and l.attrs["rel"] == "nofollow" or "nofollow" in l.attrs:
|
|
continue
|
|
href = l["href"]
|
|
try:
|
|
parsed = urllib.parse.urlparse(courlan.normalize_url(href))
|
|
netloc = parsed.netloc
|
|
path = os.path.normpath(parsed.path)
|
|
scheme = parsed.scheme
|
|
query = parsed.query
|
|
# internal link
|
|
if parsed.netloc == "":
|
|
scheme = base.scheme
|
|
netloc = base.netloc
|
|
if not parsed.path.startswith("/"):
|
|
path = os.path.normpath(base.path +"/" + path)
|
|
if not scheme.startswith("http"):
|
|
continue
|
|
if path.startswith("/"):
|
|
path = path[1:]
|
|
if path.endswith(")"):
|
|
# javascript
|
|
continue
|
|
href = urllib.parse.urlunparse((scheme,netloc,path,"",query,""))
|
|
href = courlan.normalize_url(href)
|
|
links.add(href)
|
|
except ValueError as err:
|
|
print(err)
|
|
pass
|
|
return links
|
|
def split_train(res):
|
|
trainset = []
|
|
testset = []
|
|
for i,item in enumerate(res):
|
|
if i % 10 == 0:
|
|
testset.append(item)
|
|
else:
|
|
trainset.append(item)
|
|
return trainset,testset
|
|
|
|
def calculate_checksums(text):
|
|
"""
|
|
@return fingerprints of a paragraphs in text. Paragraphs are separated by a blank line
|
|
"""
|
|
checksums = []
|
|
sizes = []
|
|
hval = 0
|
|
hsz = 0
|
|
sz = 0
|
|
for c in text:
|
|
cv = ord(c)
|
|
sz += 1
|
|
if cv > 64: # ignore non-ascii
|
|
hval += (hval << 3) + cv
|
|
zv = hval >> 31
|
|
hval &= 0x7fffffff
|
|
hval += zv
|
|
hsz += 1
|
|
if c == "\n" and hsz > 0:
|
|
if hsz > CHECK_PARAGRAPH_SIZE:
|
|
checksums.append(hval)
|
|
sizes.append(sz)
|
|
sz = 0
|
|
hsz = 0
|
|
if hsz > CHECK_PARAGRAPH_SIZE:
|
|
checksums.append(hval)
|
|
sizes.append(sz)
|
|
return checksums, sizes
|
|
|
|
def is_robot_good(link,rules):
|
|
# check robots.txt rules
|
|
if rules is not None and not rules.can_fetch("*", link):
|
|
return False
|
|
return True
|
|
|
|
def is_link_good(link):
|
|
r = courlan.check_url(link,strict=True,language=LANGUAGE)
|
|
if r is None:
|
|
return None
|
|
llink,lhostname = r
|
|
paths = set(llink.split("/"))
|
|
for item in STOP_PATHS:
|
|
if item in paths:
|
|
return None
|
|
|
|
#print(llink,lhostname)
|
|
# hostname rules
|
|
if not lhostname.endswith(DOMAIN):
|
|
LOGGER.debug("bad hostname")
|
|
return None
|
|
if courlan.is_not_crawlable(llink):
|
|
LOGGER.debug("not crawlable")
|
|
return None
|
|
return llink
|
|
|
|
def get_link_doc(link:str,status="frontlink")->dict:
|
|
r = courlan.check_url(link)
|
|
assert r is not None
|
|
link,host = r
|
|
domain = courlan.extract_domain(link)
|
|
return {"url":link,"host":host,"domain":domain,"status":status,"created_at":dat.utcnow()}
|
|
|
|
|
|
def fetch_page(link:str)->(str,str):
|
|
print("fetching:::::")
|
|
print(link)
|
|
final_link = link
|
|
response = trafilatura.fetch_url(link,decode=False)
|
|
time.sleep(2)
|
|
html = None
|
|
if response is not None :
|
|
good = True
|
|
print(response)
|
|
if response.status != 200:
|
|
good = False
|
|
LOGGER.error('not a 200 response: %s for URL %s', response.status, url)
|
|
elif response.data is None or len(response.data) < MIN_FILE_SIZE:
|
|
LOGGER.error('too small/incorrect for URL %s', link)
|
|
good = False
|
|
# raise error instead?
|
|
elif len(response.data) > MAX_FILE_SIZE:
|
|
good = False
|
|
LOGGER.error('too large: length %s for URL %s', len(response.data), link)
|
|
if good:
|
|
html = trafilatura.utils.decode_response(response)
|
|
if html is not None:
|
|
html, final_link = trafilatura.spider.refresh_detection(html, final_link)
|
|
# is there a meta-refresh on the page?
|
|
if final_link is None: # malformed or malicious content
|
|
html = None
|
|
|
|
final_link = courlan.normalize_url(final_link)
|
|
return final_link,html
|
|
|
|
def fetch_robot(base_url:str)->urllib.robotparser.RobotFileParser:
|
|
try:
|
|
rawrules = trafilatura.fetch_url("https://"+ base_url + "/robots.txt")
|
|
#print(rawrules)
|
|
rules = urllib.robotparser.RobotFileParser()
|
|
rules.parse(rawrules.split("\n"))
|
|
LOGGER.info('got robots')
|
|
except Exception as exc:
|
|
LOGGER.error('cannot read robots.txt: %s', exc)
|
|
rules = None
|
|
# exceptions happening here
|
|
return rules
|
|
|
|
def extract_page(final_link,html):
|
|
doc = None
|
|
if html is not None:
|
|
doc = trafilatura.bare_extraction(html,url=final_link,with_metadata=True,include_formatting=False,target_language=LANGUAGE,favor_precision=True)
|
|
if doc is not None:
|
|
if not "text" in doc or len(doc["text"]) < MIN_TEXT_SIZE:
|
|
# text too small
|
|
doc = None
|
|
return doc
|
|
|
|
|
|
def set_content_checksums(doc):
|
|
text = doc["text"]
|
|
checksums,sizes = calculate_checksums(text)
|
|
doc["text_size"] = len(text)
|
|
doc["text_md5"] = hashlib.md5(text.encode("utf8")).hexdigest()
|
|
doc["paragraph_checksums"] = checksums
|
|
doc["paragraph_sizes"] = sizes
|
|
doc["paragraph_sizes_sum"] = sum(sizes)
|
|
end_sentence_marker = re.compile("\w[\.]")
|
|
sentences = 0
|
|
for item in re.finditer(end_sentence_marker,text):
|
|
t = item.group(0)
|
|
if t[0].islower():
|
|
sentences += 1
|
|
doc["sentences_count"] = sentences
|
|
|
|
def index_page(db,original_link,final_link,html,doc,filter_content=True):
|
|
linkcol = db["links"]
|
|
htmlcol = db["html"]
|
|
contentcol = db["content"]
|
|
checkcol = db["check"]
|
|
state = "good"
|
|
link = original_link
|
|
if original_link != final_link:
|
|
linkcol.update_one({"url":original_link},{"$set":{"status":"redirect"}})
|
|
link = final_link
|
|
if html is None:
|
|
state = "html_error"
|
|
elif doc is None:
|
|
state = "content_error"
|
|
if doc is not None:
|
|
set_content_checksums(doc)
|
|
tsz = doc["text_size"]
|
|
psz = doc["paragraph_sizes_sum"]
|
|
if filter_content and (tsz < MIN_TEXT_SIZE or psz/tsz < TEXT_TRASH_RATIO):
|
|
state = "small"
|
|
# check copy
|
|
if state == "good":
|
|
origsz = 0
|
|
for chs,paragraph_size in zip(doc["paragraph_checksums"],doc["paragraph_sizes"]):
|
|
# index paragraph checksums
|
|
nd = checkcol.find_one({"_id":chs})
|
|
if nd is None:
|
|
origsz += paragraph_size
|
|
doc["original_text_size"] = origsz
|
|
|
|
if filter_content and (1 - (origsz / tsz)) > TEXT_TRASH_RATIO:
|
|
state = "copy"
|
|
if state == "good":
|
|
htdoc = get_link_doc(link,state)
|
|
htdoc["html"] = html
|
|
htdoc["html_size"] = len(html)
|
|
htdoc["html_md5"]= hashlib.md5(html.encode("utf8")).hexdigest()
|
|
# can be revisited - upsert
|
|
del htdoc["url"]
|
|
htmlcol.update_one({"url":link},{"$set":htdoc},upsert=True)
|
|
doc.update(get_link_doc(link,"good"))
|
|
# todo extract links
|
|
print(link,doc)
|
|
del doc["url"]
|
|
contentcol.update_one({"url":link},{"$set":doc},upsert=True)
|
|
for chs in doc["paragraph_checksums"]:
|
|
checkcol.update_one({"_id":chs},{"$inc":{"count":1}},upsert=True)
|
|
|
|
linkdoc = get_link_doc(link,state)
|
|
del linkdoc["url"]
|
|
linkcol.update_one({"url":link},{"$set":linkdoc})
|
|
return state
|
|
|
|
def save_batch_info(db,host,states,docs):
|
|
good_document_count = 0
|
|
original_text_size = 0
|
|
batch_size = 0
|
|
d = host.split(".")
|
|
domain = d[-2] + "." + d[-1]
|
|
for state,doc in zip(states,docs):
|
|
batch_size += 1
|
|
if state == "good":
|
|
good_document_count += 1
|
|
original_text_size += doc["original_text_size"]
|
|
batchdoc = {
|
|
"host": host,
|
|
"domain": domain,
|
|
"created_at": dat.utcnow(),
|
|
"good_document_count":good_document_count,
|
|
"original_text_size":original_text_size,
|
|
"good_prob": good_document_count / batch_size,
|
|
"batch_size": batch_size,
|
|
}
|
|
db["batches"].insert_one(batchdoc)
|
|
|
|
|
|
def extract_links(link_batch:list,responses:list,hostname:str,rules,default_status="frontlink")->list:
|
|
links = {}
|
|
badrobot = 0
|
|
for original_link,(final_link,html) in zip(link_batch,responses):
|
|
status = default_status
|
|
if html is None or len(html) < 256:
|
|
continue
|
|
page_links = get_bs_links(final_link,html)
|
|
for link in page_links:
|
|
if not courlan.is_external(link,final_link) and not is_robot_good(link,rules):
|
|
badrobot += 1
|
|
continue
|
|
status = str(default_status)
|
|
links[link] = status
|
|
outlinks = []
|
|
badlink = 0
|
|
for link,status in links.items():
|
|
link = is_link_good(link)
|
|
if link is None:
|
|
badlink += 1
|
|
continue
|
|
outlinks.append((link,status))
|
|
print(f"{len(links)} total links, {badrobot} badrobot {badlink} badlinks")
|
|
return outlinks
|
|
|
|
def index_links(db,extracted_links):
|
|
linkcol=db["links"]
|
|
for link,status in extracted_links:
|
|
if not is_link_good(link):
|
|
continue
|
|
if status == "frontlink" or status == "backlink":
|
|
doc = get_link_doc(link,status)
|
|
try:
|
|
linkcol.insert_one(doc)
|
|
# dont overwrite
|
|
except pymongo.errors.DuplicateKeyError as ex:
|
|
pass
|
|
else:
|
|
print("updating " + link,status)
|
|
linkcol.update_one({"url":link},{"$set":{"status":status,"updated_at":dat.utcnow()}})
|
|
|
|
def get_link_features(link):
|
|
a, urlpath = courlan.get_host_and_path(link)
|
|
features = re.split("[/?&]",urlpath)
|
|
#features = re.split("[/?-_=]",urlpath)
|
|
res = []
|
|
for i,feature in enumerate(features):
|
|
if len(feature) < 1:
|
|
continue
|
|
feature = re.sub("[0-9]","*",feature)
|
|
res.append(str(i)+ "-" + feature)
|
|
if len(res) < 2:
|
|
return None
|
|
res = res[:-1]
|
|
return res
|
|
|
|
class LinkClassifier:
|
|
def __init__(self):
|
|
|
|
self.goodcounter = collections.Counter()
|
|
self.badcounter = collections.Counter()
|
|
self.good_count = 0
|
|
self.bad_count = 0
|
|
self.alpha = 0.001
|
|
|
|
def train(self,links):
|
|
for i,item in enumerate(links):
|
|
link = item["url"]
|
|
state = item["status"]
|
|
cl = 0
|
|
if state == "good":
|
|
cl = 1
|
|
print(cl,state,link)
|
|
features = get_link_features(link)
|
|
if features is None:
|
|
continue
|
|
lf = len(features)
|
|
if state == "good":
|
|
for feature in features:
|
|
self.good_count += 1
|
|
self.goodcounter[feature] += 1
|
|
else:
|
|
for feature in features:
|
|
self.bad_count += 1
|
|
self.badcounter[feature] += 1
|
|
self.bdictsize = len(self.badcounter)
|
|
self.gdictsize = len(self.goodcounter)
|
|
|
|
def test(self,testset):
|
|
# eval
|
|
gg = 0
|
|
true_positive = 0
|
|
positive = 0
|
|
false_negative = 0
|
|
for item in testset:
|
|
l = item["url"]
|
|
cl = 0
|
|
if item["status"] == "good":
|
|
cl = 1
|
|
pcp = self.classify(l)
|
|
r = 0
|
|
if pcp > 0:
|
|
r = 1
|
|
if cl == 1:
|
|
if r == 1:
|
|
true_positive += 1
|
|
positive += 1
|
|
if r == 1 and cl == 0:
|
|
false_negative += 1
|
|
if r == cl:
|
|
gg += 1
|
|
else:
|
|
print("MISS",l,cl,pcp)
|
|
print(len(testset))
|
|
print("Precision: {}, Recall: {}".format(true_positive/positive,true_positive/(true_positive+false_negative)))
|
|
print("Accuracy:")
|
|
acc = gg / len(testset)
|
|
print(acc)
|
|
return acc
|
|
|
|
def classify(self,link):
|
|
if self.good_count == 0 or self.bad_count == 0:
|
|
return random.uniform(-0.1,0.1)
|
|
features = get_link_features(link)
|
|
res = 0
|
|
gp = math.log(self.good_count) - math.log(self.good_count + self.bad_count)
|
|
bp = math.log(self.bad_count) - math.log(self.good_count + self.bad_count)
|
|
if features is None:
|
|
return math.exp(gp) - math.exp(bp)
|
|
gcc = math.log(self.gdictsize * self.alpha + self.good_count)
|
|
bcc = math.log(self.bdictsize * self.alpha + self.bad_count)
|
|
goodprob = 0
|
|
badprob = 0
|
|
for feature in features:
|
|
g = math.log((self.goodcounter[feature] + self.alpha)) - gcc
|
|
goodprob += g
|
|
b = math.log(self.badcounter[feature] + self.alpha) - bcc
|
|
badprob += b
|
|
pa = math.exp(goodprob + gp)
|
|
pb = math.exp(badprob + bp)
|
|
return pa - pb #+ random.uniform(-0.001,0.001)
|
|
|
|
|
|
def get_links(db,hostname,status,batch_size):
|
|
linkcol = db["links"]
|
|
res = linkcol.find({"host":hostname,"status":status},limit=batch_size)
|
|
links = []
|
|
for item in res:
|
|
links.append(item["url"])
|
|
print("Got {} {}".format(len(links),status))
|
|
return links
|
|
|
|
|
|
|
|
def fetch_sitemap_links(start_link):
|
|
out = []
|
|
navigation_links = trafilatura.sitemaps.sitemap_search(start_link,target_lang=LANGUAGE)
|
|
for link in navigation_links:
|
|
out.append((link,"frontlink"))
|
|
print("Fetched {} sitemap links".format(len(out)))
|
|
return out
|
|
|
|
def fetch_front_links(start_link,rules):
|
|
start_link,hostname = courlan.check_url(start_link)
|
|
response = fetch_page(start_link)
|
|
extracted_links = extract_links([start_link],[response],hostname,rules,"frontlink")
|
|
print("Fetched {} frontlinks".format(len(extracted_links)))
|
|
return extracted_links
|
|
|
|
|
|
|
|
def link_summary(db,hostname):
|
|
linkcol = db["links"]
|
|
#res = linkcol.distinct("hostname",{"hostname":hostname})
|
|
res = linkcol.aggregate([
|
|
{"$match":{"host":hostname}},
|
|
{"$group":{"_id":"$status",
|
|
"count":{"$sum":1},
|
|
}
|
|
},
|
|
])
|
|
badcount = 0
|
|
goodcount = 0
|
|
info = {}
|
|
crawled_count = 0
|
|
bad_crawl_count = 0
|
|
for item in res:
|
|
count = item["count"]
|
|
st = item["_id"]
|
|
print(st,count)
|
|
if st == "good":
|
|
goodcount += count
|
|
if st != "frontlink" and st != "backlink":
|
|
crawled_count += count
|
|
if st != "good":
|
|
bad_crawl_count += count
|
|
info[st] = count
|
|
info["crawled_count"] = crawled_count
|
|
info["bad_crawl_count"] = bad_crawl_count
|
|
baclink_cout = 0
|
|
if "backlink" in info:
|
|
backlink_count = info["backlink"]
|
|
good_prob= 0
|
|
if crawled_count > 0:
|
|
good_prob = goodcount / crawled_count
|
|
info["good_prob"] = good_prob
|
|
print(">>>Domain Content")
|
|
contentcol = db["content"]
|
|
res = contentcol.aggregate([
|
|
{"$match":{"host":hostname}},
|
|
#{"$project": {"textsum":{"$sum":"$text_size"}}}
|
|
{"$group":{"_id":None,
|
|
"text_size_sum":{"$sum":"$text_size"},
|
|
}
|
|
},
|
|
])
|
|
text_size = 0
|
|
for item in res:
|
|
text_size = item["text_size_sum"]
|
|
good_document_characters = 0
|
|
fetch_average_characters = 0
|
|
if goodcount > 0:
|
|
good_document_characters = text_size / goodcount
|
|
fetch_average_characters = text_size / crawled_count
|
|
info["total_good_characters"] = text_size
|
|
info["average_good_characters"] = good_document_characters
|
|
info["average_fetch_characters"] = fetch_average_characters
|
|
domaincol = db["domains"]
|
|
domaincol.update_one({"host":hostname},{"$set":info},upsert=True)
|
|
res = domaincol.find_one({"host":hostname})
|
|
print(res)
|
|
|
|
def sample_links(db,hostname,status,batch_size):
|
|
print("Sampling links")
|
|
linkcol = db["links"]
|
|
res = linkcol.find({"host":hostname,"status": {"$not":{"$in":["frontlink","backlink"]}}})
|
|
cl = LinkClassifier()
|
|
crawled_links = list(res)
|
|
crawled_count = len(crawled_links)
|
|
prediction_accuracy = 0
|
|
if crawled_count > CLASSIFIER_SET_SIZE:
|
|
# train on crawled links
|
|
trainset,testset = split_train(crawled_links)
|
|
cl.train(trainset)
|
|
prediction_accuracy = cl.test(testset)
|
|
|
|
sample_set_size = SAMPLE_SET_SIZE
|
|
res = linkcol.find({"host":hostname,"status": status})
|
|
predicted_good = 0
|
|
visitcounter = collections.Counter()
|
|
good_links = []
|
|
discover_links = []
|
|
for item in res:
|
|
link = item["url"]
|
|
cll = cl.classify(link)
|
|
if cll > 0:
|
|
good_links.append(link)
|
|
features = get_link_features(link)
|
|
discover_links.append(link)
|
|
if features is None:
|
|
continue
|
|
for feature in features:
|
|
visitcounter[feature] += 1
|
|
mls = int(min(batch_size*(1- DISCOVER_LINK_RATIO),len(good_links)))
|
|
random.shuffle(good_links)
|
|
links = list(good_links[0:mls])
|
|
numdiscover = len(discover_links)
|
|
eval_discover_links = []
|
|
for link in discover_links:
|
|
features = get_link_features(link)
|
|
prob = 0
|
|
if features is not None:
|
|
for feature in features:
|
|
c = visitcounter[feature]
|
|
prob -= math.log(c) / c
|
|
eval_discover_links.append((link,prob))
|
|
eval_discover_links.sort(key=lambda x: x[1],reverse=True)
|
|
#print(eval_discover_links)
|
|
mls = int(min(batch_size * DISCOVER_LINK_RATIO,len(eval_discover_links)))
|
|
links += [l[0] for l in eval_discover_links[0:mls]]
|
|
return list(set(links))
|
|
|
|
def domain_summary(db,hostname):
|
|
linkcol = db["links"]
|
|
#res = linkcol.distinct("hostname",{"hostname":hostname})
|
|
|
|
# count links
|
|
res = linkcol.aggregate([
|
|
{"$group":{"_id":"$hostname","text_size_sum":{"$sum":"$text_size"}}},
|
|
])
|
|
for item in res:
|
|
print(item)
|
|
|
|
|
|
def createdb():
|
|
myclient = pymongo.MongoClient(CONNECTION)
|
|
db=myclient[DBNAME]
|
|
linkcol = db["links"]
|
|
linkcol.create_index("url",unique=True)
|
|
linkcol.create_index("host")
|
|
contentcol = db["content"]
|
|
contentcol.create_index("url")
|
|
contentcol.create_index("text_md5",unique=True)
|
|
#contentcol.create_index({"paragraph_checksums":1})
|
|
contentcol.create_index("host")
|
|
htmlcol = db["html"]
|
|
htmlcol.create_index("url")
|
|
htmlcol.create_index("html_md5",unique=True)
|
|
domaincol = db["domains"]
|
|
domaincol.create_index("host",unique=True)
|
|
domaincol.create_index(("average_fetch_characters",pymongo.DESCENDING))
|
|
batchcol = db["batches"]
|
|
batchcol.create_index("host")
|
|
batchcol.create_index("created_at")
|
|
|
|
def parseurl(link):
|
|
link,hostname = courlan.check_url(link)
|
|
rawrules = trafilatura.fetch_url("https://"+ hostname + "/robots.txt")
|
|
print(rawrules)
|
|
rules = urllib.robotparser.RobotFileParser()
|
|
rules.parse(rawrules.split("\n"))
|
|
print(rules.can_fetch("*",link))
|
|
print(rules.site_maps())
|
|
print(rules.crawl_delay("*"))
|
|
html = trafilatura.fetch_url(link,decode=True)
|
|
get_bs_links(link,html)
|
|
doc = trafilatura.bare_extraction(html)
|
|
import pprint
|
|
pprint.pprint(doc)
|
|
internal_links, external_links = get_bs_links(link,html)
|
|
print(internal_links)
|
|
print(external_links)
|
|
|
|
|
|
|
|
def externaldomains(link):
|
|
html = trafilatura.fetch_url(link,decode=True)
|
|
external_links = courlan.extract_links(html,link,external_bool=True,language=LANGUAGE)
|
|
domains = set()
|
|
for l in external_links:
|
|
r = courlan.check_url(l)
|
|
if r is None:
|
|
pass
|
|
link,domain = r
|
|
domains.add(domain)
|
|
for d in domains:
|
|
print(d)
|
|
|
|
def classify(start_link):
|
|
myclient = pymongo.MongoClient(CONNECTION)
|
|
db=myclient[DBNAME]
|
|
start_link,hostname = courlan.check_url(start_link)
|
|
cl = LinkClassifier()
|
|
linkcol = db["links"]
|
|
res = linkcol.find({"host":hostname,"status": {"$not":{"$in":["frontlink","backlink"]}}})
|
|
trainset, testset = split_train(res)
|
|
|
|
cl.train(trainset)
|
|
cl.test(testset)
|
|
|
|
def visit(hostname,filter_content=True):
|
|
myclient = pymongo.MongoClient(CONNECTION)
|
|
db=myclient[DBNAME]
|
|
batch_size = BATCH_SIZE
|
|
rules = fetch_robot(hostname)
|
|
start_link = "https://" + hostname
|
|
# renew front links
|
|
front_links = fetch_front_links(start_link,rules)
|
|
index_links(db,front_links)
|
|
# start crawling
|
|
# frontlinks first
|
|
links = sample_links(db,hostname,"frontlink",batch_size)
|
|
if start_link not in links:
|
|
links.insert(0,start_link)
|
|
print("sampled")
|
|
print(links)
|
|
# index results
|
|
print("Processing links")
|
|
responses = []
|
|
for link in links:
|
|
responses.append(fetch_page(link))
|
|
|
|
extracted_pages = []
|
|
for original_link,(final_link,html) in zip(links,responses):
|
|
doc = None
|
|
assert original_link is not None
|
|
doc = extract_page(final_link,html)
|
|
extracted_pages.append((original_link,final_link,html,doc))
|
|
|
|
extracted_links = extract_links(links,responses,hostname,rules,"frontlink")
|
|
index_links(db,extracted_links)
|
|
final_states = []
|
|
docs = []
|
|
for original_link,final_link,html,doc in extracted_pages:
|
|
status = index_page(db,original_link,final_link,html,doc,filter_content)
|
|
final_states.append(status)
|
|
docs.append(doc)
|
|
save_batch_info(db,hostname,final_states,docs)
|
|
link_summary(db,hostname)
|
|
|
|
def crawl_summary():
|
|
myclient = pymongo.MongoClient(CONNECTION)
|
|
db=myclient[DBNAME]
|
|
batchcol = db["batches"]
|
|
yesterday = datetime.datetime.today() - datetime.timedelta(days=1)
|
|
print(yesterday)
|
|
res = batchcol.aggregate([
|
|
{"$match":{"created_at":{"$lt": yesterday.utcnow()}}},
|
|
{"$group":{"_id":"$host",
|
|
"document_count":{"$sum":"$document_count"},
|
|
"good_document_count":{"$sum":"$good_document_count"},
|
|
"batch_size":{"$sum":"$batch_size"},
|
|
"original_text_size":{"$sum":"$original_text_size"},
|
|
}
|
|
},
|
|
{"$sort":{"original_text_size":-1}},
|
|
])
|
|
print(">>>> Batches")
|
|
headers = ["_id","document_count","good_document_count","batch_size","original_text_size"]
|
|
print("\t".join(headers))
|
|
for item in res:
|
|
values = [str(item[x]) for x in headers]
|
|
print("\t".join(values))
|
|
contentcol = db["content"]
|
|
res = contentcol.aggregate([
|
|
{"$group":{"_id":None,total_text_size:{"$sum":"$text_size"}}}
|
|
])
|
|
print(">>>>> Total text size in content")
|
|
for item in res:
|
|
print(res)
|
|
|
|
|
|
def import_html():
|
|
myclient= pymongo.MongoClient(CONNECTION)
|
|
db=myclient[DBNAME]
|
|
for l in sys.stdin:
|
|
hdoc = json.loads(l)
|
|
url = hdoc["url"]
|
|
html = BeautifulSoup(binascii.a2b_qp(hdoc["quoted_html"])).prettify()
|
|
doc = extract_page(url,html)
|
|
if doc is not None:
|
|
print(doc)
|
|
status = index_page(db,url,url,html,doc)
|
|
print(status)
|
|
|
|
def sample_domains():
|
|
myclient = pymongo.MongoClient(CONNECTION)
|
|
db=myclient[DBNAME]
|
|
linkscol = db["links"]
|
|
# discover domains
|
|
domains = linkscol.distinct("host",filter={"status":"frontlink"})
|
|
all_domains = []
|
|
for domain in domains:
|
|
all_domains.append(domain)
|
|
sample_size = min(int(DISCOVER_LINK_RATIO* BATCH_SIZE), len(all_domains))
|
|
print(">>> Discover domains {}".format(sample_size))
|
|
sample_domains = random.sample(all_domains,sample_size)
|
|
domaincol = db["domains"]
|
|
# exploit domains
|
|
res = domaincol.find({"average_fetch_characters":{"$gt":1000}}).sort("average_fetch_characters",-1)
|
|
all_domains = []
|
|
for item in res:
|
|
all_domains.append(item["host"])
|
|
sample_size = min(int((1 - DISCOVER_LINK_RATIO) * BATCH_SIZE),len(all_domains))
|
|
print(">>>> Best domains {}".format(sample_size))
|
|
sample_domains += random.sample(all_domains,sample_size)
|
|
for domain in sample_domains:
|
|
print(domain)
|