zz
This commit is contained in:
parent
deced51d48
commit
a26613ebb1
@ -18,11 +18,11 @@ import re
|
|||||||
import time
|
import time
|
||||||
import collections
|
import collections
|
||||||
import math
|
import math
|
||||||
import json
|
import random
|
||||||
|
|
||||||
LANGUAGE= os.getenv("SUCKER_LANGUAGE","sk")
|
LANGUAGE= os.getenv("SUCKER_LANGUAGE","sk")
|
||||||
DOMAIN = os.getenv("SUCKER_DOMAIN","sk")
|
DOMAIN = os.getenv("SUCKER_DOMAIN","sk")
|
||||||
BATCHSIZE=os.getenv("SUCKER_BATCHSIZE",10)
|
BATCHSIZE=int(os.getenv("SUCKER_BATCHSIZE","10"))
|
||||||
CONNECTION=os.getenv("SUCKER_CONNECTION","mongodb://root:example@localhost:27017/")
|
CONNECTION=os.getenv("SUCKER_CONNECTION","mongodb://root:example@localhost:27017/")
|
||||||
DBNAME=os.getenv("SUCKER_DBNAME","crawler")
|
DBNAME=os.getenv("SUCKER_DBNAME","crawler")
|
||||||
MINFILESIZE=300
|
MINFILESIZE=300
|
||||||
@ -102,39 +102,34 @@ def get_link_doc(link,status="frontlink"):
|
|||||||
return {"url":link,"host":host,"domain":domain,"status":status,"created_at":datetime.utcnow()}
|
return {"url":link,"host":host,"domain":domain,"status":status,"created_at":datetime.utcnow()}
|
||||||
|
|
||||||
|
|
||||||
def fetch_pages(link_batch):
|
def fetch_page(link):
|
||||||
htmls = []
|
print("fetching:::::")
|
||||||
#print(link_batch)
|
print(link)
|
||||||
#print("zzzzzzzzzz")
|
final_link = link
|
||||||
for link in link_batch:
|
response = trafilatura.fetch_url(link,decode=False)
|
||||||
print("fetching:::::")
|
time.sleep(2)
|
||||||
print(link)
|
html = None
|
||||||
final_link = link
|
if response is not None :
|
||||||
response = trafilatura.fetch_url(link,decode=False)
|
good = True
|
||||||
time.sleep(2)
|
if response.status != 200:
|
||||||
html = None
|
good = False
|
||||||
if response is not None :
|
LOGGER.error('not a 200 response: %s for URL %s', response.status, url)
|
||||||
good = True
|
elif response.data is None or len(response.data) < MINFILESIZE:
|
||||||
if response.status != 200:
|
LOGGER.error('too small/incorrect for URL %s', link)
|
||||||
good = False
|
good = False
|
||||||
LOGGER.error('not a 200 response: %s for URL %s', response.status, url)
|
# raise error instead?
|
||||||
elif response.data is None or len(response.data) < MINFILESIZE:
|
elif len(response.data) > MAXFILESIZE:
|
||||||
LOGGER.error('too small/incorrect for URL %s', link)
|
good = False
|
||||||
good = False
|
LOGGER.error('too large: length %s for URL %s', len(response.data), link)
|
||||||
# raise error instead?
|
if good:
|
||||||
elif len(response.data) > MAXFILESIZE:
|
html = trafilatura.utils.decode_response(response)
|
||||||
good = False
|
final_link = response.url
|
||||||
LOGGER.error('too large: length %s for URL %s', len(response.data), link)
|
if html is not None:
|
||||||
if good:
|
html, final_link = trafilatura.spider.refresh_detection(html, final_link)
|
||||||
html = trafilatura.utils.decode_response(response)
|
# is there a meta-refresh on the page?
|
||||||
final_link = response.url
|
if final_link is None: # malformed or malicious content
|
||||||
if html is not None:
|
html = None
|
||||||
html, final_link = trafilatura.spider.refresh_detection(html, final_link)
|
return final_link,html
|
||||||
# is there a meta-refresh on the page?
|
|
||||||
if final_link is None: # malformed or malicious content
|
|
||||||
html = None
|
|
||||||
htmls.append((final_link,html))
|
|
||||||
return htmls
|
|
||||||
|
|
||||||
def fetch_robot(base_url):
|
def fetch_robot(base_url):
|
||||||
try:
|
try:
|
||||||
@ -227,7 +222,7 @@ def index_pages(db,hostname,extracted_pages):
|
|||||||
checkcol.insert_one({"_id":chs})
|
checkcol.insert_one({"_id":chs})
|
||||||
except pymongo.errors.DuplicateKeyError as err:
|
except pymongo.errors.DuplicateKeyError as err:
|
||||||
pass
|
pass
|
||||||
linkcol.update_one({"url":original_link},{"$set":{"status":state}})
|
linkcol.update_one({"url":link},{"$set":{"status":state}})
|
||||||
|
|
||||||
|
|
||||||
def extract_links(link_batch,responses,hostname,rules,default_status="frontlink"):
|
def extract_links(link_batch,responses,hostname,rules,default_status="frontlink"):
|
||||||
@ -263,23 +258,28 @@ def index_links(db,extracted_links):
|
|||||||
for link,status in extracted_links:
|
for link,status in extracted_links:
|
||||||
if not is_link_good(link):
|
if not is_link_good(link):
|
||||||
continue
|
continue
|
||||||
doc = get_link_doc(link,status)
|
if status == "frontlink" or status == "backlink":
|
||||||
try:
|
doc = get_link_doc(link,status)
|
||||||
linkcol.insert_one(doc)
|
try:
|
||||||
except pymongo.errors.DuplicateKeyError as ex:
|
linkcol.insert_one(doc)
|
||||||
pass
|
# dont overwrite
|
||||||
|
except pymongo.errors.DuplicateKeyError as ex:
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
print("updating " + link,status)
|
||||||
|
linkcol.update_one({"url":link},{"$set":{"status":status,"updated_at":datetime.utcnow()}})
|
||||||
|
|
||||||
def get_link_features(link):
|
def get_link_features(link):
|
||||||
a, urlpath = courlan.get_host_and_path(link)
|
a, urlpath = courlan.get_host_and_path(link)
|
||||||
features = re.split("[/?&]",urlpath)
|
features = re.split("[/?&]",urlpath)
|
||||||
#features = re.split("[/?-_=]",urlpath)
|
#features = re.split("[/?-_=]",urlpath)
|
||||||
res = []
|
res = []
|
||||||
for feature in features:
|
for i,feature in enumerate(features):
|
||||||
if len(feature) < 1:
|
if len(feature) < 1:
|
||||||
continue
|
continue
|
||||||
if feature.isdigit():
|
if feature.isdigit():
|
||||||
feature = "<NUM>"
|
feature = "<NUM>"
|
||||||
res.append(feature)
|
res.append(str(i)+ "-" + feature)
|
||||||
if len(res) < 2:
|
if len(res) < 2:
|
||||||
return None
|
return None
|
||||||
res = res[:-1]
|
res = res[:-1]
|
||||||
@ -295,11 +295,9 @@ class LinkClassifier:
|
|||||||
self.bad_count = 0
|
self.bad_count = 0
|
||||||
self.alpha = 0.001
|
self.alpha = 0.001
|
||||||
|
|
||||||
def train(self,db,hostname):
|
def train(self,links):
|
||||||
linkcol = db["links"]
|
|
||||||
res = linkcol.find({"host":hostname,"status": {"$not":{"$in":["frontlink","backlink"]}}})
|
|
||||||
testset = []
|
testset = []
|
||||||
for i,item in enumerate(res):
|
for i,item in enumerate(links):
|
||||||
link = item["url"]
|
link = item["url"]
|
||||||
state = item["status"]
|
state = item["status"]
|
||||||
cl = 0
|
cl = 0
|
||||||
@ -336,9 +334,13 @@ class LinkClassifier:
|
|||||||
print("MISS",l,cl,pcp)
|
print("MISS",l,cl,pcp)
|
||||||
print("Accuracy:")
|
print("Accuracy:")
|
||||||
print(len(testset))
|
print(len(testset))
|
||||||
print(gg / len(testset))
|
acc = gg / len(testset)
|
||||||
|
print(acc)
|
||||||
|
return acc
|
||||||
|
|
||||||
def classify(self,link):
|
def classify(self,link):
|
||||||
|
if self.good_count + self.bad_count == 0:
|
||||||
|
return random.uniform(-0.1,0.1)
|
||||||
features = get_link_features(link)
|
features = get_link_features(link)
|
||||||
res = 0
|
res = 0
|
||||||
gp = math.log(self.good_count) - math.log(self.good_count + self.bad_count)
|
gp = math.log(self.good_count) - math.log(self.good_count + self.bad_count)
|
||||||
@ -363,51 +365,15 @@ class LinkClassifier:
|
|||||||
return pa - pb
|
return pa - pb
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def get_links(db,hostname,status,batch_size):
|
def get_links(db,hostname,status,batch_size):
|
||||||
linkcol = db["links"]
|
linkcol = db["links"]
|
||||||
# count downloaded links
|
res = linkcol.find({"host":hostname,"status":status},limit=batch_size)
|
||||||
res = linkcol.aggregate([
|
links = []
|
||||||
{ "$match": { "status": {"$not":{"$in":["frontlink","backlink"]}},"host":hostname } },
|
for item in res:
|
||||||
{"$group":{"_id":None,
|
links.append(item["url"])
|
||||||
"count":{"$count":{}},
|
print("Got {} {}".format(len(links),status))
|
||||||
}
|
return links
|
||||||
},
|
|
||||||
])
|
|
||||||
links = set()
|
|
||||||
out = list(res)
|
|
||||||
if len(out) == 0:
|
|
||||||
return list()
|
|
||||||
if out[0]["count"] < 200:
|
|
||||||
#res = linkcol.find({"status":status,"host":hostname},{"url":1},limit=batch_size)
|
|
||||||
# get random links
|
|
||||||
res = linkcol.aggregate([
|
|
||||||
{ "$match": { "status": status,"host":hostname } },
|
|
||||||
{ "$sample": { "size": batch_size } }
|
|
||||||
])
|
|
||||||
for i,doc in enumerate(res):
|
|
||||||
#print(">>>>>" + status)
|
|
||||||
#print(doc);
|
|
||||||
links.add(doc["url"])
|
|
||||||
if i >= batch_size:
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
cl = LinkClassifier()
|
|
||||||
cl.train(db,hostname)
|
|
||||||
res = linkcol.aggregate([
|
|
||||||
{ "$match": { "status": status,"host":hostname } },
|
|
||||||
{ "$sample": { "size": batch_size * 100 } }
|
|
||||||
])
|
|
||||||
outlinks = []
|
|
||||||
for i,doc in enumerate(res):
|
|
||||||
#print(">>>>>" + status)
|
|
||||||
#print(doc);
|
|
||||||
link = doc["url"]
|
|
||||||
outlinks.append((doc["url"],cl.classify(link)))
|
|
||||||
outlinks = sorted(outlinks, key=lambda x: x[1],reverse=True)
|
|
||||||
links = [l[0] for l in outlinks[0:batch_size]]
|
|
||||||
# todo remove very bad links from database
|
|
||||||
return list(links)
|
|
||||||
|
|
||||||
|
|
||||||
def fetch_sitemap_links(start_link):
|
def fetch_sitemap_links(start_link):
|
||||||
@ -415,42 +381,48 @@ def fetch_sitemap_links(start_link):
|
|||||||
navigation_links = trafilatura.sitemaps.sitemap_search(start_link,target_lang=LANGUAGE)
|
navigation_links = trafilatura.sitemaps.sitemap_search(start_link,target_lang=LANGUAGE)
|
||||||
for link in navigation_links:
|
for link in navigation_links:
|
||||||
out.append((link,"frontlink"))
|
out.append((link,"frontlink"))
|
||||||
|
print("Fetched {} sitemap links".format(len(out)))
|
||||||
return out
|
return out
|
||||||
|
|
||||||
def process_links(db,hostname,status,links=[],rules=None,batch_size=BATCHSIZE):
|
def fetch_front_links(start_link,rules):
|
||||||
#print(links)
|
start_link,hostname = courlan.check_url(start_link)
|
||||||
responses = fetch_pages(links)
|
response = fetch_page(start_link)
|
||||||
#print(responses)
|
extracted_links = extract_links([start_link],[response],hostname,rules,"frontlink")
|
||||||
extracted_pages = extract_pages(links,responses)
|
print("Fetched {} frontlinks".format(len(extracted_links)))
|
||||||
#print(extracted_pages)
|
return extracted_links
|
||||||
extracted_links = extract_links(links,responses,hostname,rules,status)
|
|
||||||
#print(extracted_links)
|
|
||||||
index_links(db,extracted_links)
|
|
||||||
index_pages(db,hostname,extracted_pages)
|
|
||||||
|
|
||||||
|
|
||||||
def link_summary(db,hostname):
|
def link_summary(db,hostname):
|
||||||
linkcol = db["links"]
|
linkcol = db["links"]
|
||||||
#res = linkcol.distinct("hostname",{"hostname":hostname})
|
#res = linkcol.distinct("hostname",{"hostname":hostname})
|
||||||
|
|
||||||
# count links
|
|
||||||
res = linkcol.aggregate([
|
res = linkcol.aggregate([
|
||||||
{"$match":{"host":hostname}},
|
{"$match":{"host":hostname}},
|
||||||
{"$group":{"_id":"$status","count":{"$sum":1}}},
|
{"$group":{"_id":"$status",
|
||||||
|
"count":{"$count":{}},
|
||||||
|
}
|
||||||
|
},
|
||||||
])
|
])
|
||||||
badcount = 0
|
badcount = 0
|
||||||
goodcount = 0
|
goodcount = 0
|
||||||
out = ["good","frontlink","backlink"]
|
|
||||||
info = {}
|
info = {}
|
||||||
|
crawled_count = 0
|
||||||
for item in res:
|
for item in res:
|
||||||
if item["_id"] not in out:
|
count = item["count"]
|
||||||
badcount += item["count"]
|
st = item["_id"]
|
||||||
if item["_id"] == "good":
|
print(st,count)
|
||||||
goodcount = item["count"]
|
if st == "good":
|
||||||
info[item["_id"]] = item["count"]
|
goodcount += count
|
||||||
good_prob = goodcount / (goodcount + badcount)
|
if st != "frontlink" and st != "backlink":
|
||||||
|
crawled_count += count
|
||||||
|
info[st] = count
|
||||||
|
baclink_cout = 0
|
||||||
|
if "backlink" in info:
|
||||||
|
backlink_count = info["backlink"]
|
||||||
|
good_prob= 0
|
||||||
|
if crawled_count > 0:
|
||||||
|
good_prob = goodcount / crawled_count
|
||||||
info["good_prob"] = good_prob
|
info["good_prob"] = good_prob
|
||||||
info["bad_documents"] = badcount
|
|
||||||
print(">>>Domain Content")
|
print(">>>Domain Content")
|
||||||
contentcol = db["content"]
|
contentcol = db["content"]
|
||||||
res = contentcol.aggregate([
|
res = contentcol.aggregate([
|
||||||
@ -465,35 +437,53 @@ def link_summary(db,hostname):
|
|||||||
for item in res:
|
for item in res:
|
||||||
text_size = item["text_size_sum"]
|
text_size = item["text_size_sum"]
|
||||||
good_document_characters = 0
|
good_document_characters = 0
|
||||||
|
fetch_average_characters = 0
|
||||||
if goodcount > 0:
|
if goodcount > 0:
|
||||||
good_document_characters = text_size / goodcount
|
good_document_characters = text_size / goodcount
|
||||||
fetch_average_characters = text_size / (goodcount + badcount)
|
fetch_average_characters = text_size / crawled_count
|
||||||
info["total_good_characters"] = text_size
|
info["total_good_characters"] = text_size
|
||||||
info["average_good_characters"] = good_document_characters
|
info["average_good_characters"] = good_document_characters
|
||||||
info["average_fetch_characters"] = fetch_average_characters
|
info["average_fetch_characters"] = fetch_average_characters
|
||||||
domaincol = db["domain"]
|
domaincol = db["domain"]
|
||||||
if goodcount + badcount > 100:
|
|
||||||
cl = LinkClassifier()
|
|
||||||
cl.train(db,hostname)
|
|
||||||
res = linkcol.aggregate([
|
|
||||||
{ "$match": { "status": "backlink","host":hostname } },
|
|
||||||
{ "$sample": { "size": BATCHSIZE * 100 } }
|
|
||||||
])
|
|
||||||
predicted_good = 0
|
|
||||||
predicted_bad = 0
|
|
||||||
for item in res:
|
|
||||||
cll = cl.classify(item["url"])
|
|
||||||
if cll > 0:
|
|
||||||
predicted_good += 1
|
|
||||||
else:
|
|
||||||
predicted_bad += 1
|
|
||||||
predicted_good_prob = 0
|
|
||||||
if predicted_good + predicted_bad > 0:
|
|
||||||
predicted_good_prob = predicted_good / (predicted_good + predicted_bad)
|
|
||||||
info["predicted_good_prob"] = predicted_good_prob
|
|
||||||
print(info)
|
print(info)
|
||||||
domaincol.update_one({"host":hostname},{"$set":info},upsert=True)
|
domaincol.update_one({"host":hostname},{"$set":info},upsert=True)
|
||||||
|
|
||||||
|
def sample_links(db,hostname,status,batch_size):
|
||||||
|
print("Getting backlinks")
|
||||||
|
linkcol = db["links"]
|
||||||
|
res = linkcol.find({"host":hostname,"status": {"$not":{"$in":["frontlink","backlink"]}}})
|
||||||
|
cl = LinkClassifier()
|
||||||
|
crawled_links = list(res)
|
||||||
|
crawled_count = len(crawled_links)
|
||||||
|
min_train_size = 200
|
||||||
|
prediction_accuracy = 0
|
||||||
|
if crawled_count > min_train_size:
|
||||||
|
# train on crawled links
|
||||||
|
prediction_accuracy = cl.train(crawled_links)
|
||||||
|
sample_set_size = 10000
|
||||||
|
res = linkcol.find({"host":hostname,"status": status},limit = sample_set_size)
|
||||||
|
sample_links = []
|
||||||
|
predicted_good = 0
|
||||||
|
for item in res:
|
||||||
|
for item in res:
|
||||||
|
cll = cl.classify(item["url"])
|
||||||
|
sample_links.append((item["url"],cll))
|
||||||
|
if cll > 0:
|
||||||
|
predicted_good += 1
|
||||||
|
# TODO frontlinks are not unique!
|
||||||
|
sample_links.sort(key=lambda x: x[1],reverse=True)
|
||||||
|
predicted_good_prob = predicted_good / len(sample_links)
|
||||||
|
domaincol = db["domain"]
|
||||||
|
info = {
|
||||||
|
"predicted_good_prob":predicted_good_prob,
|
||||||
|
"prediction_accuracy": prediction_accuracy,
|
||||||
|
"crawled_count": crawled_count,
|
||||||
|
}
|
||||||
|
print(info)
|
||||||
|
domaincol.update_one({"host":hostname},{"$set":info})
|
||||||
|
links = [l[0] for l in sample_links[0:batch_size]]
|
||||||
|
return links
|
||||||
|
|
||||||
def domain_summary(db,hostname):
|
def domain_summary(db,hostname):
|
||||||
linkcol = db["links"]
|
linkcol = db["links"]
|
||||||
#res = linkcol.distinct("hostname",{"hostname":hostname})
|
#res = linkcol.distinct("hostname",{"hostname":hostname})
|
||||||
@ -572,23 +562,25 @@ def visit(start_link):
|
|||||||
db=myclient[DBNAME]
|
db=myclient[DBNAME]
|
||||||
start_link,hostname = courlan.check_url(start_link)
|
start_link,hostname = courlan.check_url(start_link)
|
||||||
batch_size = BATCHSIZE
|
batch_size = BATCHSIZE
|
||||||
|
|
||||||
print("Getting frontlinks")
|
|
||||||
links = get_links(db,hostname,"frontlink",batch_size)
|
|
||||||
print(f"Got {len(links)} frontlinks")
|
|
||||||
if len(links) < batch_size:
|
|
||||||
print("Fetching sitemap links")
|
|
||||||
sitemap_links = fetch_sitemap_links(start_link)
|
|
||||||
index_links(db,sitemap_links)
|
|
||||||
links = get_links(db,hostname,"frontlink",batch_size)
|
|
||||||
links.insert(0,start_link)
|
|
||||||
if len(links) < batch_size:
|
|
||||||
back_links = get_links(db,hostname,"backlink",batch_size - len(links))
|
|
||||||
links += back_links
|
|
||||||
|
|
||||||
print("Processing links")
|
|
||||||
rules = fetch_robot(hostname)
|
rules = fetch_robot(hostname)
|
||||||
responses = fetch_pages(links)
|
# renew front links
|
||||||
|
sitemap_links = fetch_sitemap_links(start_link)
|
||||||
|
index_links(db,sitemap_links)
|
||||||
|
front_links = fetch_front_links(start_link,rules)
|
||||||
|
index_links(db,front_links)
|
||||||
|
# start crawling
|
||||||
|
# frontlinks first
|
||||||
|
links = sample_links(db,hostname,"frontlink",batch_size)
|
||||||
|
links.insert(0,start_link)
|
||||||
|
# then backlinks
|
||||||
|
if len(links) < batch_size:
|
||||||
|
back_links = sample_links(db,hostname,"backlink",batch_size - len(links))
|
||||||
|
links += back_links
|
||||||
|
# index results
|
||||||
|
print("Processing links")
|
||||||
|
responses = []
|
||||||
|
for link in links:
|
||||||
|
responses.append(fetch_page(link))
|
||||||
extracted_pages = extract_pages(links,responses)
|
extracted_pages = extract_pages(links,responses)
|
||||||
extracted_links = extract_links(links,responses,hostname,rules,"backlink")
|
extracted_links = extract_links(links,responses,hostname,rules,"backlink")
|
||||||
index_links(db,extracted_links)
|
index_links(db,extracted_links)
|
||||||
|
Loading…
Reference in New Issue
Block a user