Merge branch 'master' of git.kemt.fei.tuke.sk:dano/websucker-pip
This commit is contained in:
commit
9bc2771e24
@ -15,10 +15,13 @@ import logging as LOGGER
|
||||
import os
|
||||
import pprint
|
||||
import re
|
||||
import time
|
||||
import collections
|
||||
import math
|
||||
|
||||
LANGUAGE= os.getenv("SUCKER_LANGUAGE","sk")
|
||||
DOMAIN = os.getenv("SUCKER_DOMAIN","sk")
|
||||
BATCHSIZE=os.getenv("SUCKER_BATCHSIZE",10)
|
||||
BATCHSIZE=os.getenv("SUCKER_BATCHSIZE",100)
|
||||
CONNECTION=os.getenv("SUCKER_CONNECTION","mongodb://root:example@localhost:27017/")
|
||||
DBNAME=os.getenv("SUCKER_DBNAME","crawler")
|
||||
MINFILESIZE=300
|
||||
@ -107,6 +110,7 @@ def fetch_pages(link_batch):
|
||||
print(link)
|
||||
final_link = link
|
||||
response = trafilatura.fetch_url(link,decode=False)
|
||||
time.sleep(2)
|
||||
html = None
|
||||
if response is not None :
|
||||
good = True
|
||||
@ -256,6 +260,8 @@ def extract_links(link_batch,responses,hostname,rules,default_status="frontlink"
|
||||
def index_links(db,extracted_links):
|
||||
linkcol=db["links"]
|
||||
for link,status in extracted_links:
|
||||
if not is_link_good(link):
|
||||
continue
|
||||
doc = get_link_doc(link,status)
|
||||
try:
|
||||
linkcol.insert_one(doc)
|
||||
@ -264,63 +270,142 @@ def index_links(db,extracted_links):
|
||||
|
||||
def get_link_features(link):
|
||||
a, urlpath = courlan.get_host_and_path(link)
|
||||
features = urlpath.split("/?-_")
|
||||
if len(features) < 2:
|
||||
features = re.split("[/?&]",urlpath)
|
||||
#features = re.split("[/?-_=]",urlpath)
|
||||
res = []
|
||||
for feature in features:
|
||||
if len(feature) < 1:
|
||||
continue
|
||||
if feature.isdigit():
|
||||
feature = "<NUM>"
|
||||
res.append(feature)
|
||||
if len(res) < 2:
|
||||
return None
|
||||
# drop last part
|
||||
features = features[:-1]
|
||||
return features
|
||||
res = res[:-1]
|
||||
print(res)
|
||||
return res
|
||||
|
||||
class LinkClassifier:
|
||||
def __init__(self):
|
||||
|
||||
def link_classifier(db,hostname,batch_size):
|
||||
res = linkcol.aggregate([
|
||||
{ "$match": { "status": {"$not":{"$in":["frontlink","backlink"]}},"host":hostname } },
|
||||
{ "$sample": { "size": 2000 } }
|
||||
])
|
||||
goodcounter = collections.Counter()
|
||||
badcounter = collections.Counter()
|
||||
for item in res:
|
||||
link = res["url"]
|
||||
state = res["status"]
|
||||
self.goodcounter = collections.Counter()
|
||||
self.badcounter = collections.Counter()
|
||||
self.good_count = 0
|
||||
self.bad_count = 0
|
||||
self.alpha = 0.001
|
||||
|
||||
def train(self,db,hostname):
|
||||
linkcol = db["links"]
|
||||
res = linkcol.find({"host":hostname,"status": {"$not":{"$in":["frontlink","backlink"]}}})
|
||||
testset = []
|
||||
for i,item in enumerate(res):
|
||||
link = item["url"]
|
||||
state = item["status"]
|
||||
cl = 0
|
||||
if state == "good":
|
||||
cl = 1
|
||||
print(cl,state,link)
|
||||
if i % 10 == 1:
|
||||
testset.append((link,cl))
|
||||
continue
|
||||
features = get_link_features(link)
|
||||
if features is None:
|
||||
continue
|
||||
lf = len(features)
|
||||
for feature in features:
|
||||
if state == "good":
|
||||
goodcounter[feature] += 1/lf
|
||||
for feature in features:
|
||||
self.good_count += 1
|
||||
self.goodcounter[feature] += 1
|
||||
else:
|
||||
badcounter[feature] += 1/lf
|
||||
tf = goodcounter.keys() + bacounter.keys()
|
||||
allcounter = collections.Counter()
|
||||
for key in tf:
|
||||
gc = goodcounter[key]
|
||||
bc = badcounter[key]
|
||||
p = gc / (gc + bc)
|
||||
allcounter[key] = p
|
||||
return allcounter
|
||||
for feature in features:
|
||||
self.bad_count += 1
|
||||
self.badcounter[feature] += 1
|
||||
self.bdictsize = len(self.badcounter)
|
||||
self.gdictsize = len(self.goodcounter)
|
||||
# eval
|
||||
gg = 0
|
||||
for l,cl in testset:
|
||||
pcp = self.classify(l)
|
||||
r = 0
|
||||
if pcp > 0:
|
||||
r = 1
|
||||
if r == cl:
|
||||
gg += 1
|
||||
else:
|
||||
print("MISS",l,cl,pcp)
|
||||
print("Accuracy:")
|
||||
print(len(testset))
|
||||
print(gg / len(testset))
|
||||
|
||||
def classify(self,link):
|
||||
features = get_link_features(link)
|
||||
res = 0
|
||||
gp = math.log(self.good_count) - math.log(self.good_count + self.bad_count)
|
||||
bp = math.log(self.bad_count) - math.log(self.good_count + self.bad_count)
|
||||
if features is None:
|
||||
return math.exp(gp) - math.exp(bp)
|
||||
gcc = math.log(self.gdictsize * self.alpha + self.good_count)
|
||||
bcc = math.log(self.bdictsize * self.alpha + self.bad_count)
|
||||
goodprob = 0
|
||||
badprob = 0
|
||||
for feature in features:
|
||||
g = math.log((self.goodcounter[feature] + self.alpha)) - gcc
|
||||
goodprob += g
|
||||
b = math.log(self.badcounter[feature] + self.alpha) - bcc
|
||||
badprob += b
|
||||
print(feature,g,b)
|
||||
if (goodprob + gp) > (badprob + bp):
|
||||
#if goodprob > badprob:
|
||||
res = 1
|
||||
pa = math.exp(goodprob + gp)
|
||||
pb = math.exp(badprob + bp)
|
||||
return pa - pb
|
||||
|
||||
|
||||
|
||||
def get_links(db,hostname,status,batch_size):
|
||||
linkcol = db["links"]
|
||||
# count downloaded links
|
||||
res = linkcol.aggregate([
|
||||
{ "$match": { "status": {"$not":{"$in":["frontlink","backlink"]}},"host":hostname } },
|
||||
{"$group":{"_id":None,
|
||||
"count":{"$count":{}},
|
||||
}
|
||||
},
|
||||
])
|
||||
links = set()
|
||||
out = list(res)
|
||||
if len(out) == 0:
|
||||
return list()
|
||||
if out[0]["count"] < 200:
|
||||
#res = linkcol.find({"status":status,"host":hostname},{"url":1},limit=batch_size)
|
||||
# get random links
|
||||
res = linkcol.aggregate([
|
||||
{ "$match": { "status": status,"host":hostname } },
|
||||
{ "$sample": { "size": batch_size } }
|
||||
])
|
||||
links = set()
|
||||
for i,doc in enumerate(res):
|
||||
#print(">>>>>" + status)
|
||||
#print(doc);
|
||||
links.add(doc["url"])
|
||||
if i >= batch_size:
|
||||
break
|
||||
else:
|
||||
cl = LinkClassifier()
|
||||
cl.train(db,hostname)
|
||||
res = linkcol.aggregate([
|
||||
{ "$match": { "status": status,"host":hostname } },
|
||||
{ "$sample": { "size": batch_size * 100 } }
|
||||
])
|
||||
outlinks = []
|
||||
for i,doc in enumerate(res):
|
||||
#print(">>>>>" + status)
|
||||
#print(doc);
|
||||
link = doc["url"]
|
||||
outlinks.append((doc["url"],cl.classify(link)))
|
||||
outlinks = sorted(outlinks, key=lambda x: x[1],reverse=True)
|
||||
links = [l[0] for l in outlinks[0:batch_size]]
|
||||
# todo remove very bad links
|
||||
return list(links)
|
||||
|
||||
|
||||
@ -352,8 +437,19 @@ def link_summary(db,hostname):
|
||||
{"$match":{"host":hostname}},
|
||||
{"$group":{"_id":"$status","count":{"$sum":1}}},
|
||||
])
|
||||
badcount = 0
|
||||
goodcount = 0
|
||||
out = ["good","frontlink","backlink"]
|
||||
info = {}
|
||||
for item in res:
|
||||
print(item)
|
||||
if item["_id"] not in out:
|
||||
badcount += item["count"]
|
||||
if item["_id"] == "good":
|
||||
goodcount = item["count"]
|
||||
info[item["_id"]] = item["count"]
|
||||
good_prob = goodcount / (goodcount + badcount)
|
||||
info["good_prob"] = good_prob
|
||||
info["bad_documents"] = badcount
|
||||
print(">>>Domain Content")
|
||||
contentcol = db["content"]
|
||||
res = contentcol.aggregate([
|
||||
@ -364,8 +460,17 @@ def link_summary(db,hostname):
|
||||
}
|
||||
},
|
||||
])
|
||||
text_size = 0
|
||||
for item in res:
|
||||
print(item)
|
||||
text_size = item["text_size_sum"]
|
||||
good_document_characters = text_size / goodcount
|
||||
fetch_average_characters = text_size / (goodcount + badcount)
|
||||
info["total_good_characters"] = text_size
|
||||
info["average_good_characters"] = good_document_characters
|
||||
info["average_fetch_characters"] = fetch_average_characters
|
||||
domaincol = db["domain"]
|
||||
print(json.dumps(info))
|
||||
domaincol.update_one({"host":domain},{"$set":info},usert=True)
|
||||
|
||||
def domain_summary(db,hostname):
|
||||
linkcol = db["links"]
|
||||
@ -395,6 +500,8 @@ def createdb():
|
||||
contentcol.create_index("host")
|
||||
htmlcol = db["html"]
|
||||
htmlcol.create_index("url",unique=True)
|
||||
domaincol = db["domains"]
|
||||
domaincol.create_index("host",unique=True)
|
||||
|
||||
@cli.command()
|
||||
@click.argument("link")
|
||||
@ -427,6 +534,14 @@ def externaldomains(link):
|
||||
for d in domains:
|
||||
print(d)
|
||||
|
||||
@cli.command()
|
||||
@click.argument("start_link")
|
||||
def classify(start_link):
|
||||
myclient = pymongo.MongoClient(CONNECTION)
|
||||
db=myclient[DBNAME]
|
||||
start_link,hostname = courlan.check_url(start_link)
|
||||
cl = LinkClassifier()
|
||||
cl.train(db,hostname)
|
||||
|
||||
@cli.command()
|
||||
@click.argument("start_link")
|
||||
@ -443,15 +558,19 @@ def visit(start_link):
|
||||
print("Fetching sitemap links")
|
||||
sitemap_links = fetch_sitemap_links(start_link)
|
||||
index_links(db,sitemap_links)
|
||||
links.append(start_link)
|
||||
links = get_links(db,hostname,"frontlink",batch_size)
|
||||
links.insert(0,start_link)
|
||||
if len(links) < batch_size:
|
||||
back_links = get_links(db,hostname,"backlink",batch_size - len(links))
|
||||
links += back_links
|
||||
|
||||
print("Processing frontlinks")
|
||||
print("Processing links")
|
||||
rules = fetch_robot(hostname)
|
||||
process_links(db,hostname,"frontlink",links,rules)
|
||||
print("Getting backlinks")
|
||||
back_links = get_links(db,hostname,"backlink",batch_size)
|
||||
print("Processing backlinks")
|
||||
process_links(db,hostname,"backlink",back_links,rules=rules)
|
||||
responses = fetch_pages(links)
|
||||
extracted_pages = extract_pages(links,responses)
|
||||
extracted_links = extract_links(links,responses,hostname,rules,"backlink")
|
||||
index_links(db,extracted_links)
|
||||
index_pages(db,hostname,extracted_pages)
|
||||
link_summary(db,hostname)
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
Loading…
Reference in New Issue
Block a user