Merge branch 'master' of git.kemt.fei.tuke.sk:dano/websucker-pip

This commit is contained in:
Daniel Hládek 2023-04-04 14:39:09 +02:00
commit 9bc2771e24

View File

@ -15,10 +15,13 @@ import logging as LOGGER
import os import os
import pprint import pprint
import re import re
import time
import collections
import math
LANGUAGE= os.getenv("SUCKER_LANGUAGE","sk") LANGUAGE= os.getenv("SUCKER_LANGUAGE","sk")
DOMAIN = os.getenv("SUCKER_DOMAIN","sk") DOMAIN = os.getenv("SUCKER_DOMAIN","sk")
BATCHSIZE=os.getenv("SUCKER_BATCHSIZE",10) BATCHSIZE=os.getenv("SUCKER_BATCHSIZE",100)
CONNECTION=os.getenv("SUCKER_CONNECTION","mongodb://root:example@localhost:27017/") CONNECTION=os.getenv("SUCKER_CONNECTION","mongodb://root:example@localhost:27017/")
DBNAME=os.getenv("SUCKER_DBNAME","crawler") DBNAME=os.getenv("SUCKER_DBNAME","crawler")
MINFILESIZE=300 MINFILESIZE=300
@ -107,6 +110,7 @@ def fetch_pages(link_batch):
print(link) print(link)
final_link = link final_link = link
response = trafilatura.fetch_url(link,decode=False) response = trafilatura.fetch_url(link,decode=False)
time.sleep(2)
html = None html = None
if response is not None : if response is not None :
good = True good = True
@ -256,6 +260,8 @@ def extract_links(link_batch,responses,hostname,rules,default_status="frontlink"
def index_links(db,extracted_links): def index_links(db,extracted_links):
linkcol=db["links"] linkcol=db["links"]
for link,status in extracted_links: for link,status in extracted_links:
if not is_link_good(link):
continue
doc = get_link_doc(link,status) doc = get_link_doc(link,status)
try: try:
linkcol.insert_one(doc) linkcol.insert_one(doc)
@ -264,63 +270,142 @@ def index_links(db,extracted_links):
def get_link_features(link): def get_link_features(link):
a, urlpath = courlan.get_host_and_path(link) a, urlpath = courlan.get_host_and_path(link)
features = urlpath.split("/?-_") features = re.split("[/?&]",urlpath)
if len(features) < 2: #features = re.split("[/?-_=]",urlpath)
res = []
for feature in features:
if len(feature) < 1:
continue
if feature.isdigit():
feature = "<NUM>"
res.append(feature)
if len(res) < 2:
return None return None
# drop last part res = res[:-1]
features = features[:-1] print(res)
return features return res
class LinkClassifier:
def __init__(self):
def link_classifier(db,hostname,batch_size): self.goodcounter = collections.Counter()
res = linkcol.aggregate([ self.badcounter = collections.Counter()
{ "$match": { "status": {"$not":{"$in":["frontlink","backlink"]}},"host":hostname } }, self.good_count = 0
{ "$sample": { "size": 2000 } } self.bad_count = 0
]) self.alpha = 0.001
goodcounter = collections.Counter()
badcounter = collections.Counter() def train(self,db,hostname):
for item in res: linkcol = db["links"]
link = res["url"] res = linkcol.find({"host":hostname,"status": {"$not":{"$in":["frontlink","backlink"]}}})
state = res["status"] testset = []
for i,item in enumerate(res):
link = item["url"]
state = item["status"]
cl = 0 cl = 0
if state == "good": if state == "good":
cl = 1 cl = 1
print(cl,state,link)
if i % 10 == 1:
testset.append((link,cl))
continue
features = get_link_features(link) features = get_link_features(link)
if features is None: if features is None:
continue continue
lf = len(features) lf = len(features)
for feature in features:
if state == "good": if state == "good":
goodcounter[feature] += 1/lf for feature in features:
self.good_count += 1
self.goodcounter[feature] += 1
else: else:
badcounter[feature] += 1/lf for feature in features:
tf = goodcounter.keys() + bacounter.keys() self.bad_count += 1
allcounter = collections.Counter() self.badcounter[feature] += 1
for key in tf: self.bdictsize = len(self.badcounter)
gc = goodcounter[key] self.gdictsize = len(self.goodcounter)
bc = badcounter[key] # eval
p = gc / (gc + bc) gg = 0
allcounter[key] = p for l,cl in testset:
return allcounter pcp = self.classify(l)
r = 0
if pcp > 0:
r = 1
if r == cl:
gg += 1
else:
print("MISS",l,cl,pcp)
print("Accuracy:")
print(len(testset))
print(gg / len(testset))
def classify(self,link):
features = get_link_features(link)
res = 0
gp = math.log(self.good_count) - math.log(self.good_count + self.bad_count)
bp = math.log(self.bad_count) - math.log(self.good_count + self.bad_count)
if features is None:
return math.exp(gp) - math.exp(bp)
gcc = math.log(self.gdictsize * self.alpha + self.good_count)
bcc = math.log(self.bdictsize * self.alpha + self.bad_count)
goodprob = 0
badprob = 0
for feature in features:
g = math.log((self.goodcounter[feature] + self.alpha)) - gcc
goodprob += g
b = math.log(self.badcounter[feature] + self.alpha) - bcc
badprob += b
print(feature,g,b)
if (goodprob + gp) > (badprob + bp):
#if goodprob > badprob:
res = 1
pa = math.exp(goodprob + gp)
pb = math.exp(badprob + bp)
return pa - pb
def get_links(db,hostname,status,batch_size): def get_links(db,hostname,status,batch_size):
linkcol = db["links"] linkcol = db["links"]
# count downloaded links
res = linkcol.aggregate([
{ "$match": { "status": {"$not":{"$in":["frontlink","backlink"]}},"host":hostname } },
{"$group":{"_id":None,
"count":{"$count":{}},
}
},
])
links = set()
out = list(res)
if len(out) == 0:
return list()
if out[0]["count"] < 200:
#res = linkcol.find({"status":status,"host":hostname},{"url":1},limit=batch_size) #res = linkcol.find({"status":status,"host":hostname},{"url":1},limit=batch_size)
# get random links # get random links
res = linkcol.aggregate([ res = linkcol.aggregate([
{ "$match": { "status": status,"host":hostname } }, { "$match": { "status": status,"host":hostname } },
{ "$sample": { "size": batch_size } } { "$sample": { "size": batch_size } }
]) ])
links = set()
for i,doc in enumerate(res): for i,doc in enumerate(res):
#print(">>>>>" + status) #print(">>>>>" + status)
#print(doc); #print(doc);
links.add(doc["url"]) links.add(doc["url"])
if i >= batch_size: if i >= batch_size:
break break
else:
cl = LinkClassifier()
cl.train(db,hostname)
res = linkcol.aggregate([
{ "$match": { "status": status,"host":hostname } },
{ "$sample": { "size": batch_size * 100 } }
])
outlinks = []
for i,doc in enumerate(res):
#print(">>>>>" + status)
#print(doc);
link = doc["url"]
outlinks.append((doc["url"],cl.classify(link)))
outlinks = sorted(outlinks, key=lambda x: x[1],reverse=True)
links = [l[0] for l in outlinks[0:batch_size]]
# todo remove very bad links
return list(links) return list(links)
@ -352,8 +437,19 @@ def link_summary(db,hostname):
{"$match":{"host":hostname}}, {"$match":{"host":hostname}},
{"$group":{"_id":"$status","count":{"$sum":1}}}, {"$group":{"_id":"$status","count":{"$sum":1}}},
]) ])
badcount = 0
goodcount = 0
out = ["good","frontlink","backlink"]
info = {}
for item in res: for item in res:
print(item) if item["_id"] not in out:
badcount += item["count"]
if item["_id"] == "good":
goodcount = item["count"]
info[item["_id"]] = item["count"]
good_prob = goodcount / (goodcount + badcount)
info["good_prob"] = good_prob
info["bad_documents"] = badcount
print(">>>Domain Content") print(">>>Domain Content")
contentcol = db["content"] contentcol = db["content"]
res = contentcol.aggregate([ res = contentcol.aggregate([
@ -364,8 +460,17 @@ def link_summary(db,hostname):
} }
}, },
]) ])
text_size = 0
for item in res: for item in res:
print(item) text_size = item["text_size_sum"]
good_document_characters = text_size / goodcount
fetch_average_characters = text_size / (goodcount + badcount)
info["total_good_characters"] = text_size
info["average_good_characters"] = good_document_characters
info["average_fetch_characters"] = fetch_average_characters
domaincol = db["domain"]
print(json.dumps(info))
domaincol.update_one({"host":domain},{"$set":info},usert=True)
def domain_summary(db,hostname): def domain_summary(db,hostname):
linkcol = db["links"] linkcol = db["links"]
@ -395,6 +500,8 @@ def createdb():
contentcol.create_index("host") contentcol.create_index("host")
htmlcol = db["html"] htmlcol = db["html"]
htmlcol.create_index("url",unique=True) htmlcol.create_index("url",unique=True)
domaincol = db["domains"]
domaincol.create_index("host",unique=True)
@cli.command() @cli.command()
@click.argument("link") @click.argument("link")
@ -427,6 +534,14 @@ def externaldomains(link):
for d in domains: for d in domains:
print(d) print(d)
@cli.command()
@click.argument("start_link")
def classify(start_link):
myclient = pymongo.MongoClient(CONNECTION)
db=myclient[DBNAME]
start_link,hostname = courlan.check_url(start_link)
cl = LinkClassifier()
cl.train(db,hostname)
@cli.command() @cli.command()
@click.argument("start_link") @click.argument("start_link")
@ -443,15 +558,19 @@ def visit(start_link):
print("Fetching sitemap links") print("Fetching sitemap links")
sitemap_links = fetch_sitemap_links(start_link) sitemap_links = fetch_sitemap_links(start_link)
index_links(db,sitemap_links) index_links(db,sitemap_links)
links.append(start_link) links = get_links(db,hostname,"frontlink",batch_size)
links.insert(0,start_link)
if len(links) < batch_size:
back_links = get_links(db,hostname,"backlink",batch_size - len(links))
links += back_links
print("Processing frontlinks") print("Processing links")
rules = fetch_robot(hostname) rules = fetch_robot(hostname)
process_links(db,hostname,"frontlink",links,rules) responses = fetch_pages(links)
print("Getting backlinks") extracted_pages = extract_pages(links,responses)
back_links = get_links(db,hostname,"backlink",batch_size) extracted_links = extract_links(links,responses,hostname,rules,"backlink")
print("Processing backlinks") index_links(db,extracted_links)
process_links(db,hostname,"backlink",back_links,rules=rules) index_pages(db,hostname,extracted_pages)
link_summary(db,hostname) link_summary(db,hostname)
if __name__ == "__main__": if __name__ == "__main__":