This commit is contained in:
Daniel Hládek 2023-04-06 12:15:33 +02:00
parent a26613ebb1
commit 9a9e8da4cf
2 changed files with 57 additions and 30 deletions

View File

@ -19,6 +19,7 @@ import time
import collections
import math
import random
import hashlib
LANGUAGE= os.getenv("SUCKER_LANGUAGE","sk")
DOMAIN = os.getenv("SUCKER_DOMAIN","sk")
@ -32,17 +33,15 @@ CHECK_PARAGRAPH_SIZE=150
TEXT_TRASH_SIZE=200
TEXT_TRASH_RATIO=0.6
def put_queue(db,channel,message):
queuecol = db["queue"]
queuecol.insert_one({"channel":channel,"message":message,"created_at":datetime.utcnow(),"started_at":None})
def reserve_queue(db,channel,message):
queuecol = db["queue"]
r = queuecol.find_one_and_delete({"channel":channel},sort={"created_at":-1})
def delete_queue(db,channel):
queuecol = db["queue"]
pass
def split_train(res):
trainset = []
testset = []
for i,item in enumerate(res):
if i % 10 == 0:
testset.append(item)
else:
trainset.append(item)
return trainset,testset
def calculate_checksums(text):
"""
@ -181,6 +180,7 @@ def index_pages(db,hostname,extracted_pages):
text = doc["text"]
checksums,sizes = calculate_checksums(text)
doc["text_size"] = len(text)
doc["text_md5"] = hashlib.md5(text.encode("utf8")).hexdigest()
doc["paragraph_checksums"] = checksums
doc["paragraph_sizes"] = sizes
goodsz = sum(sizes)
@ -209,6 +209,7 @@ def index_pages(db,hostname,extracted_pages):
htdoc = get_link_doc(link,state)
htdoc["html"] = html
htdoc["html_size"] = len(html)
htdoc["html_md5"]= hashlib.md5(html.encode("utf8")).hexdigest()
# can be revisited - upsert
del htdoc["url"]
htmlcol.update_one({"url":link},{"$set":htdoc},upsert=True)
@ -296,7 +297,6 @@ class LinkClassifier:
self.alpha = 0.001
def train(self,links):
testset = []
for i,item in enumerate(links):
link = item["url"]
state = item["status"]
@ -304,9 +304,6 @@ class LinkClassifier:
if state == "good":
cl = 1
print(cl,state,link)
if i % 10 == 1:
testset.append((link,cl))
continue
features = get_link_features(link)
if features is None:
continue
@ -321,9 +318,15 @@ class LinkClassifier:
self.badcounter[feature] += 1
self.bdictsize = len(self.badcounter)
self.gdictsize = len(self.goodcounter)
def test(self,testset):
# eval
gg = 0
for l,cl in testset:
for item in testset:
l = item["url"]
cl = 0
if item["status"] == "good":
cl = 1
pcp = self.classify(l)
r = 0
if pcp > 0:
@ -339,7 +342,7 @@ class LinkClassifier:
return acc
def classify(self,link):
if self.good_count + self.bad_count == 0:
if self.good_count == 0 or self.bad_count == 0:
return random.uniform(-0.1,0.1)
features = get_link_features(link)
res = 0
@ -357,12 +360,9 @@ class LinkClassifier:
b = math.log(self.badcounter[feature] + self.alpha) - bcc
badprob += b
print(feature,g,b)
if (goodprob + gp) > (badprob + bp):
#if goodprob > badprob:
res = 1
pa = math.exp(goodprob + gp)
pb = math.exp(badprob + bp)
return pa - pb
return pa - pb #+ random.uniform(-0.001,0.001)
def get_links(db,hostname,status,batch_size):
@ -445,8 +445,9 @@ def link_summary(db,hostname):
info["average_good_characters"] = good_document_characters
info["average_fetch_characters"] = fetch_average_characters
domaincol = db["domain"]
print(info)
domaincol.update_one({"host":hostname},{"$set":info},upsert=True)
res = domaincol.find_one({"host":hostname})
print(res)
def sample_links(db,hostname,status,batch_size):
print("Getting backlinks")
@ -455,11 +456,12 @@ def sample_links(db,hostname,status,batch_size):
cl = LinkClassifier()
crawled_links = list(res)
crawled_count = len(crawled_links)
min_train_size = 200
prediction_accuracy = 0
if crawled_count > min_train_size:
if crawled_count > 200:
# train on crawled links
prediction_accuracy = cl.train(crawled_links)
trainset,testset = split_train(crawled_links)
cl.train(trainset)
prediction_accuracy = cl.test(testset)
sample_set_size = 10000
res = linkcol.find({"host":hostname,"status": status},limit = sample_set_size)
sample_links = []
@ -467,11 +469,14 @@ def sample_links(db,hostname,status,batch_size):
for item in res:
for item in res:
cll = cl.classify(item["url"])
cll += random.uniform(-0.1,0.1)
sample_links.append((item["url"],cll))
if cll > 0:
predicted_good += 1
# TODO frontlinks are not unique!
sample_links.sort(key=lambda x: x[1],reverse=True)
predicted_good_prob = 0
if len(sample_links) > 0:
predicted_good_prob = predicted_good / len(sample_links)
domaincol = db["domain"]
info = {
@ -507,11 +512,13 @@ def createdb():
linkcol.create_index("url",unique=True)
linkcol.create_index("host")
contentcol = db["content"]
contentcol.create_index("url",unique=True)
contentcol.create_index("url")
contentcol.create_index("text_md5",unique=True)
#contentcol.create_index({"paragraph_checksums":1})
contentcol.create_index("host")
htmlcol = db["html"]
htmlcol.create_index("url",unique=True)
htmlcol.create_index("url")
htmlcol.create_index("html_md5",unique=True)
domaincol = db["domains"]
domaincol.create_index("host",unique=True)
@ -553,7 +560,12 @@ def classify(start_link):
db=myclient[DBNAME]
start_link,hostname = courlan.check_url(start_link)
cl = LinkClassifier()
cl.train(db,hostname)
linkcol = db["links"]
res = linkcol.find({"host":hostname,"status": {"$not":{"$in":["frontlink","backlink"]}}})
trainset, testset = split_train(res)
cl.train(trainset)
cl.test(testset)
@cli.command()
@click.argument("start_link")

View File

@ -8,3 +8,18 @@ mycol = mydb["customers"]
mydict = {"text":"ahoj svet"}
x = mycol.insert_one(mydict)
def createdb():
myclient = pymongo.MongoClient(CONNECTION)
db=myclient[DBNAME]
linkcol = db["links"]
linkcol.create_index("url",unique=True)
linkcol.create_index("host")
contentcol = db["content"]
contentcol.create_index("url",unique=True)
#contentcol.create_index({"paragraph_checksums":1})
contentcol.create_index("host")
htmlcol = db["html"]
htmlcol.create_index("url")
domaincol = db["domains"]
domaincol.create_index("host",unique=True)