zz
This commit is contained in:
parent
ab7ca1476f
commit
69236bb58d
@ -15,10 +15,13 @@ import logging as LOGGER
|
|||||||
import os
|
import os
|
||||||
import pprint
|
import pprint
|
||||||
import re
|
import re
|
||||||
|
import time
|
||||||
|
import collections
|
||||||
|
import math
|
||||||
|
|
||||||
LANGUAGE= os.getenv("SUCKER_LANGUAGE","sk")
|
LANGUAGE= os.getenv("SUCKER_LANGUAGE","sk")
|
||||||
DOMAIN = os.getenv("SUCKER_DOMAIN","sk")
|
DOMAIN = os.getenv("SUCKER_DOMAIN","sk")
|
||||||
BATCHSIZE=os.getenv("SUCKER_BATCHSIZE",10)
|
BATCHSIZE=os.getenv("SUCKER_BATCHSIZE",100)
|
||||||
CONNECTION=os.getenv("SUCKER_CONNECTION","mongodb://root:example@localhost:27017/")
|
CONNECTION=os.getenv("SUCKER_CONNECTION","mongodb://root:example@localhost:27017/")
|
||||||
DBNAME=os.getenv("SUCKER_DBNAME","crawler")
|
DBNAME=os.getenv("SUCKER_DBNAME","crawler")
|
||||||
MINFILESIZE=300
|
MINFILESIZE=300
|
||||||
@ -107,6 +110,7 @@ def fetch_pages(link_batch):
|
|||||||
print(link)
|
print(link)
|
||||||
final_link = link
|
final_link = link
|
||||||
response = trafilatura.fetch_url(link,decode=False)
|
response = trafilatura.fetch_url(link,decode=False)
|
||||||
|
time.sleep(2)
|
||||||
html = None
|
html = None
|
||||||
if response is not None :
|
if response is not None :
|
||||||
good = True
|
good = True
|
||||||
@ -256,6 +260,8 @@ def extract_links(link_batch,responses,hostname,rules,default_status="frontlink"
|
|||||||
def index_links(db,extracted_links):
|
def index_links(db,extracted_links):
|
||||||
linkcol=db["links"]
|
linkcol=db["links"]
|
||||||
for link,status in extracted_links:
|
for link,status in extracted_links:
|
||||||
|
if not is_link_good(link):
|
||||||
|
continue
|
||||||
doc = get_link_doc(link,status)
|
doc = get_link_doc(link,status)
|
||||||
try:
|
try:
|
||||||
linkcol.insert_one(doc)
|
linkcol.insert_one(doc)
|
||||||
@ -264,63 +270,139 @@ def index_links(db,extracted_links):
|
|||||||
|
|
||||||
def get_link_features(link):
|
def get_link_features(link):
|
||||||
a, urlpath = courlan.get_host_and_path(link)
|
a, urlpath = courlan.get_host_and_path(link)
|
||||||
features = urlpath.split("/?-_")
|
features = re.split("[/?&]",urlpath)
|
||||||
if len(features) < 2:
|
#features = re.split("[/?-_=]",urlpath)
|
||||||
return None
|
res = []
|
||||||
# drop last part
|
for feature in features:
|
||||||
features = features[:-1]
|
if len(feature) < 1:
|
||||||
return features
|
|
||||||
|
|
||||||
|
|
||||||
def link_classifier(db,hostname,batch_size):
|
|
||||||
res = linkcol.aggregate([
|
|
||||||
{ "$match": { "status": {"$not":{"$in":["frontlink","backlink"]}},"host":hostname } },
|
|
||||||
{ "$sample": { "size": 2000 } }
|
|
||||||
])
|
|
||||||
goodcounter = collections.Counter()
|
|
||||||
badcounter = collections.Counter()
|
|
||||||
for item in res:
|
|
||||||
link = res["url"]
|
|
||||||
state = res["status"]
|
|
||||||
cl = 0
|
|
||||||
if state == "good":
|
|
||||||
cl = 1
|
|
||||||
features = get_link_features(link)
|
|
||||||
if features is None:
|
|
||||||
continue
|
continue
|
||||||
lf = len(features)
|
if feature.isdigit():
|
||||||
for feature in features:
|
feature = "<NUM>"
|
||||||
if state == "good":
|
res.append(feature)
|
||||||
goodcounter[feature] += 1/lf
|
if len(res) < 2:
|
||||||
else:
|
return None
|
||||||
badcounter[feature] += 1/lf
|
res = res[:-1]
|
||||||
tf = goodcounter.keys() + bacounter.keys()
|
print(res)
|
||||||
allcounter = collections.Counter()
|
return res
|
||||||
for key in tf:
|
|
||||||
gc = goodcounter[key]
|
|
||||||
bc = badcounter[key]
|
|
||||||
p = gc / (gc + bc)
|
|
||||||
allcounter[key] = p
|
|
||||||
return allcounter
|
|
||||||
|
|
||||||
|
class LinkClassifier:
|
||||||
|
def __init__(self):
|
||||||
|
|
||||||
|
self.goodcounter = collections.Counter()
|
||||||
|
self.badcounter = collections.Counter()
|
||||||
|
self.good_count = 0
|
||||||
|
self.bad_count = 0
|
||||||
|
self.alpha = 0.001
|
||||||
|
|
||||||
|
def train(self,db,hostname):
|
||||||
|
linkcol = db["links"]
|
||||||
|
res = linkcol.find({"host":hostname,"status": {"$not":{"$in":["frontlink","backlink"]}}})
|
||||||
|
testset = []
|
||||||
|
for i,item in enumerate(res):
|
||||||
|
link = item["url"]
|
||||||
|
state = item["status"]
|
||||||
|
cl = 0
|
||||||
|
if state == "good":
|
||||||
|
cl = 1
|
||||||
|
print(cl,state,link)
|
||||||
|
if i % 10 == 1:
|
||||||
|
testset.append((link,cl))
|
||||||
|
continue
|
||||||
|
features = get_link_features(link)
|
||||||
|
if features is None:
|
||||||
|
continue
|
||||||
|
lf = len(features)
|
||||||
|
if state == "good":
|
||||||
|
for feature in features:
|
||||||
|
self.good_count += 1
|
||||||
|
self.goodcounter[feature] += 1
|
||||||
|
else:
|
||||||
|
for feature in features:
|
||||||
|
self.bad_count += 1
|
||||||
|
self.badcounter[feature] += 1
|
||||||
|
self.bdictsize = len(self.badcounter)
|
||||||
|
self.gdictsize = len(self.goodcounter)
|
||||||
|
# eval
|
||||||
|
gg = 0
|
||||||
|
for l,cl in testset:
|
||||||
|
pcp = self.classify(l)
|
||||||
|
r = 0
|
||||||
|
if pcp > 0:
|
||||||
|
r = 1
|
||||||
|
if r == cl:
|
||||||
|
gg += 1
|
||||||
|
else:
|
||||||
|
print("MISS",l,cl,pcp)
|
||||||
|
print("Accuracy:")
|
||||||
|
print(len(testset))
|
||||||
|
print(gg / len(testset))
|
||||||
|
|
||||||
|
def classify(self,link):
|
||||||
|
features = get_link_features(link)
|
||||||
|
res = 0
|
||||||
|
gp = math.log(self.good_count) - math.log(self.good_count + self.bad_count)
|
||||||
|
bp = math.log(self.bad_count) - math.log(self.good_count + self.bad_count)
|
||||||
|
if features is None:
|
||||||
|
return math.exp(gp) - math.exp(bp)
|
||||||
|
gcc = math.log(self.gdictsize * self.alpha + self.good_count)
|
||||||
|
bcc = math.log(self.bdictsize * self.alpha + self.bad_count)
|
||||||
|
goodprob = 0
|
||||||
|
badprob = 0
|
||||||
|
for feature in features:
|
||||||
|
g = math.log((self.goodcounter[feature] + self.alpha)) - gcc
|
||||||
|
goodprob += g
|
||||||
|
b = math.log(self.badcounter[feature] + self.alpha) - bcc
|
||||||
|
badprob += b
|
||||||
|
print(feature,g,b)
|
||||||
|
if (goodprob + gp) > (badprob + bp):
|
||||||
|
#if goodprob > badprob:
|
||||||
|
res = 1
|
||||||
|
pa = math.exp(goodprob + gp)
|
||||||
|
pb = math.exp(badprob + bp)
|
||||||
|
return pa - pb
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def get_links(db,hostname,status,batch_size):
|
def get_links(db,hostname,status,batch_size):
|
||||||
linkcol = db["links"]
|
linkcol = db["links"]
|
||||||
#res = linkcol.find({"status":status,"host":hostname},{"url":1},limit=batch_size)
|
# count downloaded links
|
||||||
# get random links
|
|
||||||
res = linkcol.aggregate([
|
res = linkcol.aggregate([
|
||||||
{ "$match": { "status": status,"host":hostname } },
|
{ "$match": { "status": {"$not":{"$in":["frontlink","backlink"]}},"host":hostname } },
|
||||||
{ "$sample": { "size": batch_size } }
|
{"$group":{"_id":None,
|
||||||
|
"count":{"$count":{}},
|
||||||
|
}
|
||||||
|
},
|
||||||
])
|
])
|
||||||
links = set()
|
links = set()
|
||||||
for i,doc in enumerate(res):
|
if list(res)[0]["count"] < 200:
|
||||||
#print(">>>>>" + status)
|
#res = linkcol.find({"status":status,"host":hostname},{"url":1},limit=batch_size)
|
||||||
#print(doc);
|
# get random links
|
||||||
links.add(doc["url"])
|
res = linkcol.aggregate([
|
||||||
if i >= batch_size:
|
{ "$match": { "status": status,"host":hostname } },
|
||||||
break
|
{ "$sample": { "size": batch_size } }
|
||||||
|
])
|
||||||
|
for i,doc in enumerate(res):
|
||||||
|
#print(">>>>>" + status)
|
||||||
|
#print(doc);
|
||||||
|
links.add(doc["url"])
|
||||||
|
if i >= batch_size:
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
cl = LinkClassifier()
|
||||||
|
cl.train(db,hostname)
|
||||||
|
res = linkcol.aggregate([
|
||||||
|
{ "$match": { "status": status,"host":hostname } },
|
||||||
|
{ "$sample": { "size": 2000 } }
|
||||||
|
])
|
||||||
|
outlinks = []
|
||||||
|
for i,doc in enumerate(res):
|
||||||
|
#print(">>>>>" + status)
|
||||||
|
#print(doc);
|
||||||
|
link = doc["url"]
|
||||||
|
outlinks.append((doc["url"],cl.classify(link)))
|
||||||
|
outlinks = sorted(outlinks, key=lambda x: x[1],reverse=True)
|
||||||
|
links = [l[0] for l in outlinks[0:batch_size]]
|
||||||
|
# todo remove very bad links
|
||||||
return list(links)
|
return list(links)
|
||||||
|
|
||||||
|
|
||||||
@ -427,6 +509,14 @@ def externaldomains(link):
|
|||||||
for d in domains:
|
for d in domains:
|
||||||
print(d)
|
print(d)
|
||||||
|
|
||||||
|
@cli.command()
|
||||||
|
@click.argument("start_link")
|
||||||
|
def classify(start_link):
|
||||||
|
myclient = pymongo.MongoClient(CONNECTION)
|
||||||
|
db=myclient[DBNAME]
|
||||||
|
start_link,hostname = courlan.check_url(start_link)
|
||||||
|
cl = LinkClassifier()
|
||||||
|
cl.train(db,hostname)
|
||||||
|
|
||||||
@cli.command()
|
@cli.command()
|
||||||
@click.argument("start_link")
|
@click.argument("start_link")
|
||||||
|
Loading…
Reference in New Issue
Block a user