This commit is contained in:
Daniel Hládek 2023-04-03 16:37:01 +02:00
parent ab7ca1476f
commit 69236bb58d

View File

@ -15,10 +15,13 @@ import logging as LOGGER
import os import os
import pprint import pprint
import re import re
import time
import collections
import math
LANGUAGE= os.getenv("SUCKER_LANGUAGE","sk") LANGUAGE= os.getenv("SUCKER_LANGUAGE","sk")
DOMAIN = os.getenv("SUCKER_DOMAIN","sk") DOMAIN = os.getenv("SUCKER_DOMAIN","sk")
BATCHSIZE=os.getenv("SUCKER_BATCHSIZE",10) BATCHSIZE=os.getenv("SUCKER_BATCHSIZE",100)
CONNECTION=os.getenv("SUCKER_CONNECTION","mongodb://root:example@localhost:27017/") CONNECTION=os.getenv("SUCKER_CONNECTION","mongodb://root:example@localhost:27017/")
DBNAME=os.getenv("SUCKER_DBNAME","crawler") DBNAME=os.getenv("SUCKER_DBNAME","crawler")
MINFILESIZE=300 MINFILESIZE=300
@ -107,6 +110,7 @@ def fetch_pages(link_batch):
print(link) print(link)
final_link = link final_link = link
response = trafilatura.fetch_url(link,decode=False) response = trafilatura.fetch_url(link,decode=False)
time.sleep(2)
html = None html = None
if response is not None : if response is not None :
good = True good = True
@ -256,6 +260,8 @@ def extract_links(link_batch,responses,hostname,rules,default_status="frontlink"
def index_links(db,extracted_links): def index_links(db,extracted_links):
linkcol=db["links"] linkcol=db["links"]
for link,status in extracted_links: for link,status in extracted_links:
if not is_link_good(link):
continue
doc = get_link_doc(link,status) doc = get_link_doc(link,status)
try: try:
linkcol.insert_one(doc) linkcol.insert_one(doc)
@ -264,63 +270,139 @@ def index_links(db,extracted_links):
def get_link_features(link): def get_link_features(link):
a, urlpath = courlan.get_host_and_path(link) a, urlpath = courlan.get_host_and_path(link)
features = urlpath.split("/?-_") features = re.split("[/?&]",urlpath)
if len(features) < 2: #features = re.split("[/?-_=]",urlpath)
res = []
for feature in features:
if len(feature) < 1:
continue
if feature.isdigit():
feature = "<NUM>"
res.append(feature)
if len(res) < 2:
return None return None
# drop last part res = res[:-1]
features = features[:-1] print(res)
return features return res
class LinkClassifier:
def __init__(self):
def link_classifier(db,hostname,batch_size): self.goodcounter = collections.Counter()
res = linkcol.aggregate([ self.badcounter = collections.Counter()
{ "$match": { "status": {"$not":{"$in":["frontlink","backlink"]}},"host":hostname } }, self.good_count = 0
{ "$sample": { "size": 2000 } } self.bad_count = 0
]) self.alpha = 0.001
goodcounter = collections.Counter()
badcounter = collections.Counter() def train(self,db,hostname):
for item in res: linkcol = db["links"]
link = res["url"] res = linkcol.find({"host":hostname,"status": {"$not":{"$in":["frontlink","backlink"]}}})
state = res["status"] testset = []
for i,item in enumerate(res):
link = item["url"]
state = item["status"]
cl = 0 cl = 0
if state == "good": if state == "good":
cl = 1 cl = 1
print(cl,state,link)
if i % 10 == 1:
testset.append((link,cl))
continue
features = get_link_features(link) features = get_link_features(link)
if features is None: if features is None:
continue continue
lf = len(features) lf = len(features)
for feature in features:
if state == "good": if state == "good":
goodcounter[feature] += 1/lf for feature in features:
self.good_count += 1
self.goodcounter[feature] += 1
else: else:
badcounter[feature] += 1/lf for feature in features:
tf = goodcounter.keys() + bacounter.keys() self.bad_count += 1
allcounter = collections.Counter() self.badcounter[feature] += 1
for key in tf: self.bdictsize = len(self.badcounter)
gc = goodcounter[key] self.gdictsize = len(self.goodcounter)
bc = badcounter[key] # eval
p = gc / (gc + bc) gg = 0
allcounter[key] = p for l,cl in testset:
return allcounter pcp = self.classify(l)
r = 0
if pcp > 0:
r = 1
if r == cl:
gg += 1
else:
print("MISS",l,cl,pcp)
print("Accuracy:")
print(len(testset))
print(gg / len(testset))
def classify(self,link):
features = get_link_features(link)
res = 0
gp = math.log(self.good_count) - math.log(self.good_count + self.bad_count)
bp = math.log(self.bad_count) - math.log(self.good_count + self.bad_count)
if features is None:
return math.exp(gp) - math.exp(bp)
gcc = math.log(self.gdictsize * self.alpha + self.good_count)
bcc = math.log(self.bdictsize * self.alpha + self.bad_count)
goodprob = 0
badprob = 0
for feature in features:
g = math.log((self.goodcounter[feature] + self.alpha)) - gcc
goodprob += g
b = math.log(self.badcounter[feature] + self.alpha) - bcc
badprob += b
print(feature,g,b)
if (goodprob + gp) > (badprob + bp):
#if goodprob > badprob:
res = 1
pa = math.exp(goodprob + gp)
pb = math.exp(badprob + bp)
return pa - pb
def get_links(db,hostname,status,batch_size): def get_links(db,hostname,status,batch_size):
linkcol = db["links"] linkcol = db["links"]
# count downloaded links
res = linkcol.aggregate([
{ "$match": { "status": {"$not":{"$in":["frontlink","backlink"]}},"host":hostname } },
{"$group":{"_id":None,
"count":{"$count":{}},
}
},
])
links = set()
if list(res)[0]["count"] < 200:
#res = linkcol.find({"status":status,"host":hostname},{"url":1},limit=batch_size) #res = linkcol.find({"status":status,"host":hostname},{"url":1},limit=batch_size)
# get random links # get random links
res = linkcol.aggregate([ res = linkcol.aggregate([
{ "$match": { "status": status,"host":hostname } }, { "$match": { "status": status,"host":hostname } },
{ "$sample": { "size": batch_size } } { "$sample": { "size": batch_size } }
]) ])
links = set()
for i,doc in enumerate(res): for i,doc in enumerate(res):
#print(">>>>>" + status) #print(">>>>>" + status)
#print(doc); #print(doc);
links.add(doc["url"]) links.add(doc["url"])
if i >= batch_size: if i >= batch_size:
break break
else:
cl = LinkClassifier()
cl.train(db,hostname)
res = linkcol.aggregate([
{ "$match": { "status": status,"host":hostname } },
{ "$sample": { "size": 2000 } }
])
outlinks = []
for i,doc in enumerate(res):
#print(">>>>>" + status)
#print(doc);
link = doc["url"]
outlinks.append((doc["url"],cl.classify(link)))
outlinks = sorted(outlinks, key=lambda x: x[1],reverse=True)
links = [l[0] for l in outlinks[0:batch_size]]
# todo remove very bad links
return list(links) return list(links)
@ -427,6 +509,14 @@ def externaldomains(link):
for d in domains: for d in domains:
print(d) print(d)
@cli.command()
@click.argument("start_link")
def classify(start_link):
myclient = pymongo.MongoClient(CONNECTION)
db=myclient[DBNAME]
start_link,hostname = courlan.check_url(start_link)
cl = LinkClassifier()
cl.train(db,hostname)
@cli.command() @cli.command()
@click.argument("start_link") @click.argument("start_link")