zz
This commit is contained in:
parent
7d09f112df
commit
289fbf7fb2
@ -93,7 +93,7 @@ def is_link_good(link):
|
||||
return None
|
||||
return llink
|
||||
|
||||
def get_link_doc(link,status="frontlink"):
|
||||
def get_link_doc(link:str,status="frontlink")->dict:
|
||||
r = courlan.check_url(link)
|
||||
assert r is not None
|
||||
link,host = r
|
||||
@ -101,7 +101,7 @@ def get_link_doc(link,status="frontlink"):
|
||||
return {"url":link,"host":host,"domain":domain,"status":status,"created_at":datetime.utcnow()}
|
||||
|
||||
|
||||
def fetch_page(link):
|
||||
def fetch_page(link:str)->(str,str):
|
||||
print("fetching:::::")
|
||||
print(link)
|
||||
final_link = link
|
||||
@ -130,7 +130,7 @@ def fetch_page(link):
|
||||
html = None
|
||||
return final_link,html
|
||||
|
||||
def fetch_robot(base_url):
|
||||
def fetch_robot(base_url:str)->urllib.robotparser.RobotFileParser:
|
||||
try:
|
||||
rawrules = trafilatura.fetch_url("https://"+ base_url + "/robots.txt")
|
||||
#print(rawrules)
|
||||
@ -144,7 +144,7 @@ def fetch_robot(base_url):
|
||||
return rules
|
||||
|
||||
|
||||
def extract_pages(link_batch,responses):
|
||||
def extract_pages(link_batch:list,responses:list)->list:
|
||||
out = []
|
||||
for original_link,(final_link,html) in zip(link_batch,responses):
|
||||
doc = None
|
||||
@ -225,16 +225,69 @@ def index_pages(db,hostname,extracted_pages):
|
||||
pass
|
||||
linkcol.update_one({"url":link},{"$set":{"status":state}})
|
||||
|
||||
from bs4 import BeautifulSoup
|
||||
import urllib.parse
|
||||
import w3lib.url
|
||||
import os.path
|
||||
|
||||
def extract_links(link_batch,responses,hostname,rules,default_status="frontlink"):
|
||||
def get_bs_links(link,html):
|
||||
# Extrakcia linkov zo stranky
|
||||
bs = BeautifulSoup(html, "lxml")
|
||||
base = link
|
||||
if bs.base is not None and "href" in bs.base.attrs:
|
||||
base = bs.base["href"]
|
||||
base = urllib.parse.urlparse(w3lib.url.canonicalize_url(base))
|
||||
external_links = set()
|
||||
internal_links = set()
|
||||
# Normalizacia linkov
|
||||
for l in bs.find_all("a", href=True):
|
||||
if "rel" in l.attrs and l.attrs["rel"] == "nofollow" or "nofollow" in l.attrs:
|
||||
continue
|
||||
href = l["href"]
|
||||
try:
|
||||
parsed = urllib.parse.urlparse(w3lib.url.canonicalize_url(href))
|
||||
netloc = parsed.netloc
|
||||
path = os.path.normpath(parsed.path)
|
||||
scheme = parsed.scheme
|
||||
query = w3lib.url.url_query_cleaner(parsed.query,["id","aid","p","page","pid"])
|
||||
print(parsed)
|
||||
if parsed.netloc == "":
|
||||
scheme = base.scheme
|
||||
if parsed.path == "/":
|
||||
netloc = base.netloc
|
||||
else:
|
||||
netloc = base.netloc
|
||||
path = os.path.normpath(base.path +"/" + path)
|
||||
if not scheme.startswith("http"):
|
||||
continue
|
||||
if path.startswith("/"):
|
||||
path = path[1:]
|
||||
external = True
|
||||
if parsed.netloc == base.netloc:
|
||||
external = False
|
||||
href = urllib.parse.urlunparse((scheme,netloc,path,"","",""))
|
||||
href = w3lib.url.canonicalize_url(href)
|
||||
print(href)
|
||||
if external:
|
||||
external_links.add(href)
|
||||
else:
|
||||
internal_links.add(href)
|
||||
except ValueError as err:
|
||||
print(err)
|
||||
pass
|
||||
print(internal_links,external_links)
|
||||
return internal_links,external_links
|
||||
|
||||
def extract_links(link_batch:list,responses:list,hostname:str,rules,default_status="frontlink")->list:
|
||||
links = {}
|
||||
badrobot = 0
|
||||
for original_link,(final_link,html) in zip(link_batch,responses):
|
||||
status = default_status
|
||||
external_links = courlan.extract_links(html,final_link,external_bool=True,language=LANGUAGE)
|
||||
internal_links, external_links = get_bs_links(final_link,html)
|
||||
#external_links = courlan.extract_links(html,final_link,external_bool=True,language=LANGUAGE)
|
||||
for link in external_links:
|
||||
links[link] = "frontlink"
|
||||
internal_links = courlan.extract_links(html,final_link,external_bool=False,language=LANGUAGE)
|
||||
#internal_links = courlan.extract_links(html,final_link,external_bool=False,language=LANGUAGE)
|
||||
#print(extracted_links)
|
||||
for link in internal_links:
|
||||
if not is_robot_good(link,rules):
|
||||
@ -283,7 +336,6 @@ def get_link_features(link):
|
||||
if len(res) < 2:
|
||||
return None
|
||||
res = res[:-1]
|
||||
print(res)
|
||||
return res
|
||||
|
||||
class LinkClassifier:
|
||||
@ -477,30 +529,39 @@ def sample_links(db,hostname,status,batch_size):
|
||||
cl.train(trainset)
|
||||
prediction_accuracy = cl.test(testset)
|
||||
sample_set_size = 10000
|
||||
res = linkcol.find({"host":hostname,"status": status},limit = sample_set_size)
|
||||
res = linkcol.find({"host":hostname,"status": status})
|
||||
sample_links = []
|
||||
predicted_good = 0
|
||||
visitcounter = collections.Counter()
|
||||
good_links = []
|
||||
discover_links = []
|
||||
for item in res:
|
||||
for item in res:
|
||||
cll = cl.classify(item["url"])
|
||||
#cll += random.uniform(-0.1,0.1)
|
||||
sample_links.append((item["url"],cll))
|
||||
link = item["url"]
|
||||
cll = cl.classify(link)
|
||||
if cll > 0:
|
||||
predicted_good += 1
|
||||
# TODO frontlinks are not unique!
|
||||
sample_links.sort(key=lambda x: x[1],reverse=True)
|
||||
predicted_good_prob = 0
|
||||
if len(sample_links) > 0:
|
||||
predicted_good_prob = predicted_good / len(sample_links)
|
||||
domaincol = db["domain"]
|
||||
info = {
|
||||
"predicted_good_prob":predicted_good_prob,
|
||||
"prediction_accuracy": prediction_accuracy,
|
||||
"crawled_count": crawled_count,
|
||||
}
|
||||
print(info)
|
||||
domaincol.update_one({"host":hostname},{"$set":info})
|
||||
links = [l[0] for l in sample_links[0:batch_size]]
|
||||
good_links.append(link)
|
||||
features = get_link_features(link)
|
||||
discover_links.append(link)
|
||||
if features is None:
|
||||
continue
|
||||
for feature in features:
|
||||
visitcounter[feature] += 1
|
||||
mls = int(min(batch_size/2,len(good_links)))
|
||||
random.shuffle(good_links)
|
||||
links = good_links[0:mls]
|
||||
numdiscover = len(discover_links)
|
||||
eval_discover_links = []
|
||||
for link in discover_links:
|
||||
features = get_link_features(link)
|
||||
prob = 0
|
||||
if features is not None:
|
||||
for feature in features:
|
||||
prob += math.log(visitcounter[feature] / numdiscover)
|
||||
eval_discover_links.append((link,prob))
|
||||
eval_discover_links.sort(key=lambda x: x[1],reverse=True)
|
||||
print(eval_discover_links)
|
||||
mls = int(min(batch_size/2,len(discover_links)))
|
||||
links += [l[0] for l in eval_discover_links[0:mls]]
|
||||
return links
|
||||
|
||||
def domain_summary(db,hostname):
|
||||
@ -549,6 +610,7 @@ def parseurl(link):
|
||||
print(rules.site_maps())
|
||||
print(rules.crawl_delay("*"))
|
||||
html = trafilatura.fetch_url(link,decode=True)
|
||||
get_bs_links(link,html)
|
||||
doc = trafilatura.bare_extraction(html)
|
||||
import pprint
|
||||
pprint.pprint(doc)
|
||||
@ -597,17 +659,13 @@ def visit(start_link):
|
||||
# frontlinks first
|
||||
links = sample_links(db,hostname,"frontlink",batch_size)
|
||||
links.insert(0,start_link)
|
||||
# then backlinks
|
||||
if len(links) < batch_size:
|
||||
back_links = sample_links(db,hostname,"backlink",batch_size - len(links))
|
||||
links += back_links
|
||||
# index results
|
||||
print("Processing links")
|
||||
responses = []
|
||||
for link in links:
|
||||
responses.append(fetch_page(link))
|
||||
extracted_pages = extract_pages(links,responses)
|
||||
extracted_links = extract_links(links,responses,hostname,rules,"backlink")
|
||||
extracted_links = extract_links(links,responses,hostname,rules,"frontlink")
|
||||
index_links(db,extracted_links)
|
||||
index_pages(db,hostname,extracted_pages)
|
||||
link_summary(db,hostname)
|
||||
|
Loading…
Reference in New Issue
Block a user