Bakalarska_praca/trainingscript.py

62 lines
1.8 KiB
Python

from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer, TrainingArguments
from datasets import load_dataset
model_name = "google/mt5-base"
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
def preprocess_function(examples):
before_list = []
after_list = []
for ex in examples["before after"]:
if ex is not None:
splits = ex.split(" before after ")
before_list.append(splits[0] if len(splits) == 2 else ex)
after_list.append(splits[1] if len(splits) == 2 else '')
else:
before_list.append('')
after_list.append('')
model_inputs = tokenizer(before_list, padding="max_length", truncation=True, max_length=512)
labels = tokenizer(after_list, padding="max_length", truncation=True, max_length=512)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
dataset = load_dataset("csv", data_files={"train": "converted.csv"}, delimiter=" ", column_names=["before after"])
tokenized_datasets = dataset.map(preprocess_function, batched=True)
training_args = TrainingArguments(
output_dir="./results2",
evaluation_strategy="epoch",
save_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=1,
per_device_eval_batch_size=1,
num_train_epochs=1,
weight_decay=0.01,
gradient_accumulation_steps=64,
fp16=True,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
tokenizer=tokenizer,
)
trainer.train()
for param in model.parameters():
param.data = param.data.contiguous()
model.save_pretrained("T5Autocorrection", safe_serialization=False) # Отключаем safetensors для простого сохранения
tokenizer.save_pretrained("T5TokenizerAutocorrection")