Update trainingscript.py
This commit is contained in:
parent
13136dd010
commit
f640bd9d1a
@ -1,7 +1,8 @@
|
||||
from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer, TrainingArguments
|
||||
from datasets import load_dataset
|
||||
|
||||
model_name = "t5-base"
|
||||
|
||||
model_name = "google/mt5-base"
|
||||
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
||||
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
||||
|
||||
@ -11,37 +12,38 @@ def preprocess_function(examples):
|
||||
for ex in examples["before after"]:
|
||||
if ex is not None:
|
||||
splits = ex.split(" before after ")
|
||||
if len(splits) == 2:
|
||||
before_list.append(splits[0])
|
||||
after_list.append(splits[1])
|
||||
else:
|
||||
before_list.append(ex)
|
||||
after_list.append('')
|
||||
before_list.append(splits[0] if len(splits) == 2 else ex)
|
||||
after_list.append(splits[1] if len(splits) == 2 else '')
|
||||
else:
|
||||
before_list.append('')
|
||||
after_list.append('')
|
||||
|
||||
model_inputs = tokenizer(before_list, padding="max_length", truncation=True)
|
||||
labels = tokenizer(after_list, padding="max_length", truncation=True)
|
||||
# Токенизация с ограничением по длине
|
||||
model_inputs = tokenizer(before_list, padding="max_length", truncation=True, max_length=512)
|
||||
labels = tokenizer(after_list, padding="max_length", truncation=True, max_length=512)
|
||||
model_inputs["labels"] = labels["input_ids"]
|
||||
return model_inputs
|
||||
|
||||
|
||||
dataset = load_dataset("csv", data_files={"train": "converted.csv"}, delimiter=" ", column_names=["before after"])
|
||||
|
||||
|
||||
tokenized_datasets = dataset.map(preprocess_function, batched=True)
|
||||
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir="./results1",
|
||||
output_dir="./results2",
|
||||
evaluation_strategy="epoch",
|
||||
save_strategy="epoch",
|
||||
learning_rate=2e-5,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
per_device_train_batch_size=1,
|
||||
per_device_eval_batch_size=1,
|
||||
num_train_epochs=1,
|
||||
weight_decay=0.01,
|
||||
gradient_accumulation_steps=64,
|
||||
fp16=True,
|
||||
)
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
@ -49,6 +51,13 @@ trainer = Trainer(
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
|
||||
|
||||
trainer.train()
|
||||
model.save_pretrained("T5Autocorrection")
|
||||
|
||||
|
||||
for param in model.parameters():
|
||||
param.data = param.data.contiguous()
|
||||
|
||||
|
||||
model.save_pretrained("T5Autocorrection", safe_serialization=False) # Отключаем safetensors для простого сохранения
|
||||
tokenizer.save_pretrained("T5TokenizerAutocorrection")
|
Loading…
Reference in New Issue
Block a user