Update trainingscript.py
This commit is contained in:
parent
13136dd010
commit
f640bd9d1a
@ -1,7 +1,8 @@
|
|||||||
from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer, TrainingArguments
|
from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer, TrainingArguments
|
||||||
from datasets import load_dataset
|
from datasets import load_dataset
|
||||||
|
|
||||||
model_name = "t5-base"
|
|
||||||
|
model_name = "google/mt5-base"
|
||||||
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
||||||
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
||||||
|
|
||||||
@ -11,37 +12,38 @@ def preprocess_function(examples):
|
|||||||
for ex in examples["before after"]:
|
for ex in examples["before after"]:
|
||||||
if ex is not None:
|
if ex is not None:
|
||||||
splits = ex.split(" before after ")
|
splits = ex.split(" before after ")
|
||||||
if len(splits) == 2:
|
before_list.append(splits[0] if len(splits) == 2 else ex)
|
||||||
before_list.append(splits[0])
|
after_list.append(splits[1] if len(splits) == 2 else '')
|
||||||
after_list.append(splits[1])
|
|
||||||
else:
|
|
||||||
before_list.append(ex)
|
|
||||||
after_list.append('')
|
|
||||||
else:
|
else:
|
||||||
before_list.append('')
|
before_list.append('')
|
||||||
after_list.append('')
|
after_list.append('')
|
||||||
|
|
||||||
model_inputs = tokenizer(before_list, padding="max_length", truncation=True)
|
# Токенизация с ограничением по длине
|
||||||
labels = tokenizer(after_list, padding="max_length", truncation=True)
|
model_inputs = tokenizer(before_list, padding="max_length", truncation=True, max_length=512)
|
||||||
|
labels = tokenizer(after_list, padding="max_length", truncation=True, max_length=512)
|
||||||
model_inputs["labels"] = labels["input_ids"]
|
model_inputs["labels"] = labels["input_ids"]
|
||||||
return model_inputs
|
return model_inputs
|
||||||
|
|
||||||
|
|
||||||
dataset = load_dataset("csv", data_files={"train": "converted.csv"}, delimiter=" ", column_names=["before after"])
|
dataset = load_dataset("csv", data_files={"train": "converted.csv"}, delimiter=" ", column_names=["before after"])
|
||||||
|
|
||||||
|
|
||||||
tokenized_datasets = dataset.map(preprocess_function, batched=True)
|
tokenized_datasets = dataset.map(preprocess_function, batched=True)
|
||||||
|
|
||||||
|
|
||||||
training_args = TrainingArguments(
|
training_args = TrainingArguments(
|
||||||
output_dir="./results1",
|
output_dir="./results2",
|
||||||
evaluation_strategy="epoch",
|
evaluation_strategy="epoch",
|
||||||
save_strategy="epoch",
|
save_strategy="epoch",
|
||||||
learning_rate=2e-5,
|
learning_rate=2e-5,
|
||||||
per_device_train_batch_size=64,
|
per_device_train_batch_size=1,
|
||||||
per_device_eval_batch_size=64,
|
per_device_eval_batch_size=1,
|
||||||
num_train_epochs=1,
|
num_train_epochs=1,
|
||||||
weight_decay=0.01,
|
weight_decay=0.01,
|
||||||
|
gradient_accumulation_steps=64,
|
||||||
|
fp16=True,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
trainer = Trainer(
|
trainer = Trainer(
|
||||||
model=model,
|
model=model,
|
||||||
args=training_args,
|
args=training_args,
|
||||||
@ -49,6 +51,13 @@ trainer = Trainer(
|
|||||||
tokenizer=tokenizer,
|
tokenizer=tokenizer,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
trainer.train()
|
trainer.train()
|
||||||
model.save_pretrained("T5Autocorrection")
|
|
||||||
tokenizer.save_pretrained("T5TokenizerAutocorrection")
|
|
||||||
|
for param in model.parameters():
|
||||||
|
param.data = param.data.contiguous()
|
||||||
|
|
||||||
|
|
||||||
|
model.save_pretrained("T5Autocorrection", safe_serialization=False) # Отключаем safetensors для простого сохранения
|
||||||
|
tokenizer.save_pretrained("T5TokenizerAutocorrection")
|
Loading…
Reference in New Issue
Block a user