Update trainingscript.py

This commit is contained in:
Andrii Pervashov 2024-10-11 07:22:18 +00:00
parent 13136dd010
commit f640bd9d1a

View File

@ -1,7 +1,8 @@
from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer, TrainingArguments from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer, TrainingArguments
from datasets import load_dataset from datasets import load_dataset
model_name = "t5-base"
model_name = "google/mt5-base"
tokenizer = T5Tokenizer.from_pretrained(model_name) tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name)
@ -11,37 +12,38 @@ def preprocess_function(examples):
for ex in examples["before after"]: for ex in examples["before after"]:
if ex is not None: if ex is not None:
splits = ex.split(" before after ") splits = ex.split(" before after ")
if len(splits) == 2: before_list.append(splits[0] if len(splits) == 2 else ex)
before_list.append(splits[0]) after_list.append(splits[1] if len(splits) == 2 else '')
after_list.append(splits[1])
else:
before_list.append(ex)
after_list.append('')
else: else:
before_list.append('') before_list.append('')
after_list.append('') after_list.append('')
model_inputs = tokenizer(before_list, padding="max_length", truncation=True) # Токенизация с ограничением по длине
labels = tokenizer(after_list, padding="max_length", truncation=True) model_inputs = tokenizer(before_list, padding="max_length", truncation=True, max_length=512)
labels = tokenizer(after_list, padding="max_length", truncation=True, max_length=512)
model_inputs["labels"] = labels["input_ids"] model_inputs["labels"] = labels["input_ids"]
return model_inputs return model_inputs
dataset = load_dataset("csv", data_files={"train": "converted.csv"}, delimiter=" ", column_names=["before after"]) dataset = load_dataset("csv", data_files={"train": "converted.csv"}, delimiter=" ", column_names=["before after"])
tokenized_datasets = dataset.map(preprocess_function, batched=True) tokenized_datasets = dataset.map(preprocess_function, batched=True)
training_args = TrainingArguments( training_args = TrainingArguments(
output_dir="./results1", output_dir="./results2",
evaluation_strategy="epoch", evaluation_strategy="epoch",
save_strategy="epoch", save_strategy="epoch",
learning_rate=2e-5, learning_rate=2e-5,
per_device_train_batch_size=64, per_device_train_batch_size=1,
per_device_eval_batch_size=64, per_device_eval_batch_size=1,
num_train_epochs=1, num_train_epochs=1,
weight_decay=0.01, weight_decay=0.01,
gradient_accumulation_steps=64,
fp16=True,
) )
trainer = Trainer( trainer = Trainer(
model=model, model=model,
args=training_args, args=training_args,
@ -49,6 +51,13 @@ trainer = Trainer(
tokenizer=tokenizer, tokenizer=tokenizer,
) )
trainer.train() trainer.train()
model.save_pretrained("T5Autocorrection")
for param in model.parameters():
param.data = param.data.contiguous()
model.save_pretrained("T5Autocorrection", safe_serialization=False) # Отключаем safetensors для простого сохранения
tokenizer.save_pretrained("T5TokenizerAutocorrection") tokenizer.save_pretrained("T5TokenizerAutocorrection")