training script, 25.9.2024 version
This commit is contained in:
parent
7b333c201c
commit
13136dd010
@ -1,54 +1,54 @@
|
||||
from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer, TrainingArguments
|
||||
from datasets import load_dataset
|
||||
from transformers import T5Tokenizer, T5ForConditionalGeneration, Trainer, TrainingArguments
|
||||
|
||||
# Initialize the tokenizer
|
||||
model_name = "t5-small"
|
||||
model_name = "t5-base"
|
||||
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
||||
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
||||
|
||||
# Load the dataset with the specific configuration
|
||||
dataset = load_dataset("wiki_atomic_edits", "english_insertions", trust_remote_code=True)
|
||||
|
||||
# Inspect the dataset splits
|
||||
print(dataset.keys()) # Print available dataset splits
|
||||
|
||||
# Preprocessing Function
|
||||
def preprocess_function(examples):
|
||||
inputs = examples["base_sentence"]
|
||||
targets = examples["edited_sentence"]
|
||||
model_inputs = tokenizer(inputs, max_length=128, truncation=True, padding="max_length")
|
||||
labels = tokenizer(targets, max_length=128, truncation=True, padding="max_length")
|
||||
labels["input_ids"] = [
|
||||
[(label if label != tokenizer.pad_token_id else -100) for label in labels_example]
|
||||
for labels_example in labels["input_ids"]
|
||||
]
|
||||
before_list = []
|
||||
after_list = []
|
||||
for ex in examples["before after"]:
|
||||
if ex is not None:
|
||||
splits = ex.split(" before after ")
|
||||
if len(splits) == 2:
|
||||
before_list.append(splits[0])
|
||||
after_list.append(splits[1])
|
||||
else:
|
||||
before_list.append(ex)
|
||||
after_list.append('')
|
||||
else:
|
||||
before_list.append('')
|
||||
after_list.append('')
|
||||
|
||||
model_inputs = tokenizer(before_list, padding="max_length", truncation=True)
|
||||
labels = tokenizer(after_list, padding="max_length", truncation=True)
|
||||
model_inputs["labels"] = labels["input_ids"]
|
||||
return model_inputs
|
||||
|
||||
# Apply the preprocessing function to the dataset
|
||||
|
||||
dataset = load_dataset("csv", data_files={"train": "converted.csv"}, delimiter=" ", column_names=["before after"])
|
||||
|
||||
tokenized_datasets = dataset.map(preprocess_function, batched=True)
|
||||
|
||||
# Initialize the model
|
||||
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
||||
|
||||
# Set up training arguments
|
||||
training_args = TrainingArguments(
|
||||
output_dir="./results",
|
||||
evaluation_strategy="epoch", # Updated from eval_strategy to evaluation_strategy
|
||||
output_dir="./results1",
|
||||
evaluation_strategy="epoch",
|
||||
save_strategy="epoch",
|
||||
learning_rate=2e-5,
|
||||
per_device_train_batch_size=4,
|
||||
per_device_eval_batch_size=4,
|
||||
num_train_epochs=3,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
num_train_epochs=1,
|
||||
weight_decay=0.01,
|
||||
logging_dir="./logs",
|
||||
)
|
||||
|
||||
# Initialize Trainer
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets.get("validation") # Use .get() to avoid KeyError
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
|
||||
# Start training
|
||||
trainer.train()
|
||||
trainer.train()
|
||||
model.save_pretrained("T5Autocorrection")
|
||||
tokenizer.save_pretrained("T5TokenizerAutocorrection")
|
||||
|
Loading…
Reference in New Issue
Block a user