training script, 25.9.2024 version
This commit is contained in:
parent
7b333c201c
commit
13136dd010
@ -1,54 +1,54 @@
|
|||||||
|
from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer, TrainingArguments
|
||||||
from datasets import load_dataset
|
from datasets import load_dataset
|
||||||
from transformers import T5Tokenizer, T5ForConditionalGeneration, Trainer, TrainingArguments
|
|
||||||
|
|
||||||
# Initialize the tokenizer
|
model_name = "t5-base"
|
||||||
model_name = "t5-small"
|
|
||||||
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
||||||
|
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
||||||
|
|
||||||
# Load the dataset with the specific configuration
|
|
||||||
dataset = load_dataset("wiki_atomic_edits", "english_insertions", trust_remote_code=True)
|
|
||||||
|
|
||||||
# Inspect the dataset splits
|
|
||||||
print(dataset.keys()) # Print available dataset splits
|
|
||||||
|
|
||||||
# Preprocessing Function
|
|
||||||
def preprocess_function(examples):
|
def preprocess_function(examples):
|
||||||
inputs = examples["base_sentence"]
|
before_list = []
|
||||||
targets = examples["edited_sentence"]
|
after_list = []
|
||||||
model_inputs = tokenizer(inputs, max_length=128, truncation=True, padding="max_length")
|
for ex in examples["before after"]:
|
||||||
labels = tokenizer(targets, max_length=128, truncation=True, padding="max_length")
|
if ex is not None:
|
||||||
labels["input_ids"] = [
|
splits = ex.split(" before after ")
|
||||||
[(label if label != tokenizer.pad_token_id else -100) for label in labels_example]
|
if len(splits) == 2:
|
||||||
for labels_example in labels["input_ids"]
|
before_list.append(splits[0])
|
||||||
]
|
after_list.append(splits[1])
|
||||||
|
else:
|
||||||
|
before_list.append(ex)
|
||||||
|
after_list.append('')
|
||||||
|
else:
|
||||||
|
before_list.append('')
|
||||||
|
after_list.append('')
|
||||||
|
|
||||||
|
model_inputs = tokenizer(before_list, padding="max_length", truncation=True)
|
||||||
|
labels = tokenizer(after_list, padding="max_length", truncation=True)
|
||||||
model_inputs["labels"] = labels["input_ids"]
|
model_inputs["labels"] = labels["input_ids"]
|
||||||
return model_inputs
|
return model_inputs
|
||||||
|
|
||||||
# Apply the preprocessing function to the dataset
|
|
||||||
|
dataset = load_dataset("csv", data_files={"train": "converted.csv"}, delimiter=" ", column_names=["before after"])
|
||||||
|
|
||||||
tokenized_datasets = dataset.map(preprocess_function, batched=True)
|
tokenized_datasets = dataset.map(preprocess_function, batched=True)
|
||||||
|
|
||||||
# Initialize the model
|
|
||||||
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
|
||||||
|
|
||||||
# Set up training arguments
|
|
||||||
training_args = TrainingArguments(
|
training_args = TrainingArguments(
|
||||||
output_dir="./results",
|
output_dir="./results1",
|
||||||
evaluation_strategy="epoch", # Updated from eval_strategy to evaluation_strategy
|
evaluation_strategy="epoch",
|
||||||
|
save_strategy="epoch",
|
||||||
learning_rate=2e-5,
|
learning_rate=2e-5,
|
||||||
per_device_train_batch_size=4,
|
per_device_train_batch_size=64,
|
||||||
per_device_eval_batch_size=4,
|
per_device_eval_batch_size=64,
|
||||||
num_train_epochs=3,
|
num_train_epochs=1,
|
||||||
weight_decay=0.01,
|
weight_decay=0.01,
|
||||||
logging_dir="./logs",
|
|
||||||
)
|
)
|
||||||
|
|
||||||
# Initialize Trainer
|
|
||||||
trainer = Trainer(
|
trainer = Trainer(
|
||||||
model=model,
|
model=model,
|
||||||
args=training_args,
|
args=training_args,
|
||||||
train_dataset=tokenized_datasets["train"],
|
train_dataset=tokenized_datasets["train"],
|
||||||
eval_dataset=tokenized_datasets.get("validation") # Use .get() to avoid KeyError
|
tokenizer=tokenizer,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Start training
|
|
||||||
trainer.train()
|
trainer.train()
|
||||||
|
model.save_pretrained("T5Autocorrection")
|
||||||
|
tokenizer.save_pretrained("T5TokenizerAutocorrection")
|
||||||
|
Loading…
Reference in New Issue
Block a user