Bakalarska_praca/train2310.py

95 lines
3.2 KiB
Python
Raw Normal View History

2024-10-29 13:08:43 +00:00
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
os.environ['WANDB_DISABLED'] = 'true'
import pandas as pd
from datasets import Dataset
from transformers import T5Tokenizer, T5ForConditionalGeneration, Trainer, TrainingArguments
from sklearn.model_selection import train_test_split
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Load dataset
2024-11-10 11:40:38 +00:00
df = pd.read_csv("dataset_book.csv")
2024-10-29 13:08:43 +00:00
# Preprocessing dataset: remove NaNs and cast columns to strings
df.dropna(subset=['incorrect', 'correct'], inplace=True)
df['incorrect'] = df['incorrect'].astype(str)
df['correct'] = df['correct'].astype(str)
# Split dataset into train, validation, and test sets
train_df, test_df = train_test_split(df, test_size=0.2, random_state=42)
val_df, test_df = train_test_split(test_df, test_size=0.5, random_state=42)
# Convert pandas DataFrame to Hugging Face Dataset
train_dataset = Dataset.from_pandas(train_df)
val_dataset = Dataset.from_pandas(val_df)
test_dataset = Dataset.from_pandas(test_df)
# Load tokenizer and model
2024-11-10 11:40:38 +00:00
tokenizer = AutoTokenizer.from_pretrained("T5Autocorrection228")
model = AutoModelForSeq2SeqLM.from_pretrained("T5Autocorrection228")
2024-10-29 13:08:43 +00:00
# Preprocess function to tokenize the data
def preprocess_function(examples):
input_texts = examples["incorrect"]
target_texts = examples["correct"]
model_inputs = tokenizer(input_texts, max_length=128, truncation=True, padding="max_length")
labels = tokenizer(target_texts, max_length=128, truncation=True, padding="max_length")
model_inputs["labels"] = labels["input_ids"]
return model_inputs
# Tokenize datasets
tokenized_train_dataset = train_dataset.map(preprocess_function, batched=True)
tokenized_val_dataset = val_dataset.map(preprocess_function, batched=True)
tokenized_test_dataset = test_dataset.map(preprocess_function, batched=True)
# Define training arguments
training_args = TrainingArguments(
2024-11-10 11:40:38 +00:00
output_dir="./results_book",
2024-10-29 13:08:43 +00:00
num_train_epochs=30,
per_device_train_batch_size=1,
warmup_steps=500,
weight_decay=0.01,
2024-11-10 11:40:38 +00:00
logging_dir="./logs_book",
2024-10-29 13:08:43 +00:00
logging_steps=10,
evaluation_strategy="epoch",
save_strategy="epoch",
save_total_limit=1,
learning_rate=5e-5,
)
# Function to ensure all tensors are contiguous before saving the model
def save_contiguous_model(model, output_dir):
# Make all parameters contiguous
for param in model.parameters():
if not param.is_contiguous():
param.data = param.data.contiguous()
# Save the model
model.save_pretrained(output_dir)
# Custom Trainer to make tensors contiguous before saving
class CustomTrainer(Trainer):
def _save(self, output_dir: str = None, state_dict=None):
# Ensure tensors are contiguous
save_contiguous_model(self.model, output_dir)
# Initialize the custom Trainer
trainer = CustomTrainer(
model=model,
args=training_args,
train_dataset=tokenized_train_dataset,
eval_dataset=tokenized_val_dataset,
)
# Train the model
trainer.train()
# Evaluate the model on the test set
print("Evaluation on the test set:")
trainer.evaluate(tokenized_test_dataset)
# Save the final model and tokenizer
2024-11-10 11:40:38 +00:00
save_contiguous_model(model, "T5Autocorrection_Book")
tokenizer.save_pretrained("T5Autocorrection_Book")
2024-10-29 13:08:43 +00:00