Bakalarska_praca/trainingscript.py

54 lines
1.8 KiB
Python
Raw Normal View History

2024-08-16 14:35:54 +00:00
from datasets import load_dataset
from transformers import T5Tokenizer, T5ForConditionalGeneration, Trainer, TrainingArguments
# Initialize the tokenizer
model_name = "t5-small"
tokenizer = T5Tokenizer.from_pretrained(model_name)
# Load the dataset with the specific configuration
dataset = load_dataset("wiki_atomic_edits", "english_insertions", trust_remote_code=True)
# Inspect the dataset splits
print(dataset.keys()) # Print available dataset splits
# Preprocessing Function
def preprocess_function(examples):
inputs = examples["base_sentence"]
targets = examples["edited_sentence"]
model_inputs = tokenizer(inputs, max_length=128, truncation=True, padding="max_length")
labels = tokenizer(targets, max_length=128, truncation=True, padding="max_length")
labels["input_ids"] = [
[(label if label != tokenizer.pad_token_id else -100) for label in labels_example]
for labels_example in labels["input_ids"]
]
model_inputs["labels"] = labels["input_ids"]
return model_inputs
# Apply the preprocessing function to the dataset
tokenized_datasets = dataset.map(preprocess_function, batched=True)
# Initialize the model
model = T5ForConditionalGeneration.from_pretrained(model_name)
# Set up training arguments
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch", # Updated from eval_strategy to evaluation_strategy
learning_rate=2e-5,
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
num_train_epochs=3,
weight_decay=0.01,
logging_dir="./logs",
)
# Initialize Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets.get("validation") # Use .get() to avoid KeyError
)
# Start training
trainer.train()