#include "list_ops.h" #ifndef LIST_OPS_H #define LIST_OPS_H #include #include typedef int list_element_t; typedef struct { size_t length; list_element_t elements[]; } list_t; // constructs a new list list_t *new_list(size_t length, list_element_t elements[]); // append entries to a list and return the new list list_t *append_list(list_t *list1, list_t *list2); // filter list returning only values that satisfy the filter function list_t *filter_list(list_t *list, bool (*filter)(list_element_t)); // returns the length of the list size_t length_list(list_t *list); // return a list of elements whose values equal the list value transformed by // the mapping function list_t *map_list(list_t *list, list_element_t (*map)(list_element_t)); // folds (reduces) the given list from the left with a function list_element_t foldl_list(list_t *list, list_element_t initial, list_element_t (*foldl)(list_element_t, list_element_t)); // folds (reduces) the given list from the right with a function list_element_t foldr_list(list_t *list, list_element_t initial, list_element_t (*foldr)(list_element_t, list_element_t)); // reverse the elements of the list list_t *reverse_list(list_t *list); // destroy the entire list // list will be a dangling pointer after calling this method on it void delete_list(list_t *list); #endif #include "list_ops.h" void delete_list(list_t *list) { free(list); } list_t *new_list(size_t length, list_element_t elements[]) { // Calculate the memory size size_t size = sizeof(list_t) + length * sizeof(list_element_t); // Allocate memory list_t *list = malloc(size); if (list == NULL) { return NULL; // Check if allocation failed } // Set the length of the list list->length = length; // Copy the input elements to the list for (size_t i = 0; i < length; i++) { list->elements[i] = elements[i]; } return list; } size_t length_list(list_t *list) { return list->length; } list_t *append_list(list_t *list1, list_t *list2) { size_t new_length = list1->length + list2->length; list_element_t new_elements[new_length]; for (size_t i = 0; i < list1->length; ++i) { new_elements[i] = list1->elements[i]; } for (size_t i = 0; i < list2->length; ++i) { new_elements[list1->length + i] = list2->elements[i]; } return new_list(new_length, new_elements); } list_t *reverse_list(list_t *list) { list_element_t reversed_elements[list->length]; for (size_t i = 0; i < list->length; ++i) { reversed_elements[i] = list->elements[list->length - 1 - i]; } return new_list(list->length, reversed_elements); } list_t *map_list(list_t *list, list_element_t (*map)(list_element_t)) { list_element_t mapped_elements[list->length]; for (size_t i = 0; i < list->length; i++) { mapped_elements[i] = map(list->elements[i]); } return new_list(list->length, mapped_elements); } list_t *filter_list(list_t *list, bool (*filter)(list_element_t)) { list_element_t filtered_elements[list->length]; size_t count = 0; for (size_t i = 0; i < list->length; i++) { if (filter(list->elements[i])) { filtered_elements[count++] = list->elements[i]; } } return new_list(count, filtered_elements); } list_element_t foldr_list(list_t *list, list_element_t initial, list_element_t (*foldr)(list_element_t, list_element_t)) { list_element_t result = initial; // Start with initial value // Traverse the list from last to first for (size_t i = 0; i < list->length; ++i) { result = foldr(list->elements[list->length - 1 - i], result); } return result; } list_element_t foldl_list(list_t *list, list_element_t initial, list_element_t (*foldl)(list_element_t, list_element_t)) { list_element_t result = initial; // Start with initial value // Traverse the list from first to last for (size_t i = 0; i < list->length; ++i) { result = foldl(result, list->elements[i]); } return result; }