70 lines
1.8 KiB
Python
70 lines
1.8 KiB
Python
import timing
|
|
import argparse
|
|
import sys
|
|
|
|
import numpy as np
|
|
|
|
import torch.nn as nn
|
|
from torch.autograd import Variable
|
|
from torch.optim import SGD
|
|
from torch.utils.data import DataLoader
|
|
|
|
from util.util import enumerateWithEstimate
|
|
from .dsets import PrepcacheLunaDataset, getCtSampleSize
|
|
from util.logconf import logging
|
|
# from .model import LunaModel
|
|
|
|
log = logging.getLogger(__name__)
|
|
# log.setLevel(logging.WARN)
|
|
log.setLevel(logging.INFO)
|
|
# log.setLevel(logging.DEBUG)
|
|
|
|
|
|
class LunaPrepCacheApp:
|
|
@classmethod
|
|
def __init__(self, sys_argv=None):
|
|
if sys_argv is None:
|
|
sys_argv = sys.argv[1:]
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--batch-size',
|
|
help='Batch size to use for training',
|
|
default=1024,
|
|
type=int,
|
|
)
|
|
parser.add_argument('--num-workers',
|
|
help='Number of worker processes for background data loading',
|
|
default=8,
|
|
type=int,
|
|
)
|
|
# parser.add_argument('--scaled',
|
|
# help="Scale the CT chunks to square voxels.",
|
|
# default=False,
|
|
# action='store_true',
|
|
# )
|
|
|
|
self.cli_args = parser.parse_args(sys_argv)
|
|
|
|
def main(self):
|
|
log.info("Starting {}, {}".format(type(self).__name__, self.cli_args))
|
|
|
|
self.prep_dl = DataLoader(
|
|
PrepcacheLunaDataset(
|
|
# sortby_str='series_uid',
|
|
),
|
|
batch_size=self.cli_args.batch_size,
|
|
num_workers=self.cli_args.num_workers,
|
|
)
|
|
|
|
batch_iter = enumerateWithEstimate(
|
|
self.prep_dl,
|
|
"Stuffing cache",
|
|
start_ndx=self.prep_dl.num_workers,
|
|
)
|
|
for batch_ndx, batch_tup in batch_iter:
|
|
pass
|
|
|
|
|
|
if __name__ == '__main__':
|
|
LunaPrepCacheApp().main()
|