# From https://github.com/jvanvugt/pytorch-unet # https://raw.githubusercontent.com/jvanvugt/pytorch-unet/master/unet.py # MIT License # # Copyright (c) 2018 Joris # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Adapted from https://discuss.pytorch.org/t/unet-implementation/426 import torch from torch import nn import torch.nn.functional as F class UNet(nn.Module): def __init__(self, in_channels=1, n_classes=2, depth=5, wf=6, padding=False, batch_norm=False, up_mode='upconv'): """ Implementation of U-Net: Convolutional Networks for Biomedical Image Segmentation (Ronneberger et al., 2015) https://arxiv.org/abs/1505.04597 Using the default arguments will yield the exact version used in the original paper Args: in_channels (int): number of input channels n_classes (int): number of output channels depth (int): depth of the network wf (int): number of filters in the first layer is 2**wf padding (bool): if True, apply padding such that the input shape is the same as the output. This may introduce artifacts batch_norm (bool): Use BatchNorm after layers with an activation function up_mode (str): one of 'upconv' or 'upsample'. 'upconv' will use transposed convolutions for learned upsampling. 'upsample' will use bilinear upsampling. """ super(UNet, self).__init__() assert up_mode in ('upconv', 'upsample') self.padding = padding self.depth = depth prev_channels = in_channels self.down_path = nn.ModuleList() for i in range(depth): self.down_path.append(UNetConvBlock(prev_channels, 2**(wf+i), padding, batch_norm)) prev_channels = 2**(wf+i) self.up_path = nn.ModuleList() for i in reversed(range(depth - 1)): self.up_path.append(UNetUpBlock(prev_channels, 2**(wf+i), up_mode, padding, batch_norm)) prev_channels = 2**(wf+i) self.last = nn.Conv2d(prev_channels, n_classes, kernel_size=1) def forward(self, x): blocks = [] for i, down in enumerate(self.down_path): x = down(x) if i != len(self.down_path)-1: blocks.append(x) x = F.avg_pool2d(x, 2) for i, up in enumerate(self.up_path): x = up(x, blocks[-i-1]) return self.last(x) class UNetConvBlock(nn.Module): def __init__(self, in_size, out_size, padding, batch_norm): super(UNetConvBlock, self).__init__() block = [] block.append(nn.Conv2d(in_size, out_size, kernel_size=3, padding=int(padding))) block.append(nn.ReLU()) # block.append(nn.LeakyReLU()) if batch_norm: block.append(nn.BatchNorm2d(out_size)) block.append(nn.Conv2d(out_size, out_size, kernel_size=3, padding=int(padding))) block.append(nn.ReLU()) # block.append(nn.LeakyReLU()) if batch_norm: block.append(nn.BatchNorm2d(out_size)) self.block = nn.Sequential(*block) def forward(self, x): out = self.block(x) return out class UNetUpBlock(nn.Module): def __init__(self, in_size, out_size, up_mode, padding, batch_norm): super(UNetUpBlock, self).__init__() if up_mode == 'upconv': self.up = nn.ConvTranspose2d(in_size, out_size, kernel_size=2, stride=2) elif up_mode == 'upsample': self.up = nn.Sequential(nn.Upsample(mode='bilinear', scale_factor=2), nn.Conv2d(in_size, out_size, kernel_size=1)) self.conv_block = UNetConvBlock(in_size, out_size, padding, batch_norm) def center_crop(self, layer, target_size): _, _, layer_height, layer_width = layer.size() diff_y = (layer_height - target_size[0]) // 2 diff_x = (layer_width - target_size[1]) // 2 return layer[:, :, diff_y:(diff_y + target_size[0]), diff_x:(diff_x + target_size[1])] def forward(self, x, bridge): up = self.up(x) crop1 = self.center_crop(bridge, up.shape[2:]) out = torch.cat([up, crop1], 1) out = self.conv_block(out) return out