diff --git a/pages/students/2016/patrik_pavlisin/dp21/README.md b/pages/students/2016/patrik_pavlisin/dp21/README.md index ebc4c34f..a65c2740 100644 --- a/pages/students/2016/patrik_pavlisin/dp21/README.md +++ b/pages/students/2016/patrik_pavlisin/dp21/README.md @@ -1,8 +1,8 @@ -**Úvod** +## Úvod Neurónový strojový preklad (NMT) je prístup k strojovému prekladu, ktorý využíva umelú neurónovú sieť na predpovedanie pravdepodobnosti postupnosti slov, typicky modelovaním celých viet v jednom integrovanom modeli. NMT nie je drastickým krokom nad rámec toho, čo sa tradične robí v štatistickom strojovom preklade (SMT). Štruktúra modelov je jednoduchšia ako frázové modely. Neexistuje žiadny samostatný jazykový model, prekladový model a model zmeny poradia, ale iba jeden sekvenčný model, ktorý predpovedá jedno slovo po druhom. Táto predikcia sekvencie je však podmienená celou zdrojovou vetou a celou už vyprodukovanou cieľovou sekvenciou. -**Neurónová sieť** +## Neurónová sieť Neurónovú sieť tvoria neuróny, ktoré sú medzi sebou poprepájané. Všeobecne môžeme poprepájať ľubovoľný počet neurónov, pričom okrem pôvodných vstupov môžu byť za vstupy brané aj výstupy iných neurónov. Počet neurónov a ich vzájomné poprepájanie v sieti určuje tzv. architektúru (topológiu) neurónovej siete. Neurónová sieť sa v čase vyvíja, preto je potrebné celkovú dynamiku neurónovej siete rozdeliť do troch dynamík a potom uvažovať tri režimy práce siete: organizačná (zmena topológie), aktívna (zmena stavu) a adaptívna (zmena konfigurácie). Jednotlivé dynamiky neurónovej siete sú obvykle zadané počiatočným stavom a matematickou rovnicou, resp. pravidlom, ktoré určuje vývoj príslušnej charakteristiky sieti v čase.