update
This commit is contained in:
		
							parent
							
								
									179efb972e
								
							
						
					
					
						commit
						d919ca93c0
					
				@ -1,3 +1,9 @@
 | 
			
		||||
## Update 05.06.2020
 | 
			
		||||
- pridaný čas začiatku a čas ukončenia trénovania, aby bolo možné určit, ako dlho trénovanie trvalo
 | 
			
		||||
- upravený skript na úpravu textu do vhodnej podoby (skombinoval som môj vlastný skript s jedným voľne dostupným na internete, aby bola úprava textu presnejšia)
 | 
			
		||||
- pridaný tag na identifikáciu čísel v texte ("N"), čo by teoreticky mohlo zvýšiť presnosť modelu
 | 
			
		||||
- vyriešený výpočet precision, recall a f-score (problém som vyriešil tak, že som najprv zo skutočných hodnôt urobil tensor, ktorý som následne konvertoval na numpy pole)
 | 
			
		||||
 | 
			
		||||
## Update 05.05.2020
 | 
			
		||||
- upravený skript "punc.py" tak, že model načítava dáta zo súboru/ov
 | 
			
		||||
- vytvorený skript "text.py", ktorý upraví dáta do vhodnej podoby (5 krokov)
 | 
			
		||||
 | 
			
		||||
@ -1,5 +1,4 @@
 | 
			
		||||
import os
 | 
			
		||||
import re
 | 
			
		||||
 | 
			
		||||
if os.path.exists('tags.txt'):
 | 
			
		||||
	os.remove('tags.txt')
 | 
			
		||||
@ -11,15 +10,15 @@ with open('text.txt', 'r') as input_file:
 | 
			
		||||
				if (word == '.PER'):
 | 
			
		||||
					word = word.replace(word, 'P')
 | 
			
		||||
					output_file.write(word + ' ')
 | 
			
		||||
 | 
			
		||||
				elif (word == ',COM'):
 | 
			
		||||
					word = word.replace(word, 'C')
 | 
			
		||||
					output_file.write(word + ' ')
 | 
			
		||||
 | 
			
		||||
				elif(word == '?QUE'):
 | 
			
		||||
					word = word.replace(word, 'Q')
 | 
			
		||||
					output_file.write(word + ' ')
 | 
			
		||||
 | 
			
		||||
				elif(word == '<NUM>'):
 | 
			
		||||
					word = word.replace(word, 'N')
 | 
			
		||||
					output_file.write(word + ' ')
 | 
			
		||||
				else:
 | 
			
		||||
					word = word.replace(word, 'S')
 | 
			
		||||
					output_file.write(word + ' ')
 | 
			
		||||
							
								
								
									
										73
									
								
								pages/students/2016/darius_lindvai/dp2021/prepare_text.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										73
									
								
								pages/students/2016/darius_lindvai/dp2021/prepare_text.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,73 @@
 | 
			
		||||
from __future__ import division, print_function
 | 
			
		||||
from nltk.tokenize import word_tokenize
 | 
			
		||||
 | 
			
		||||
import nltk
 | 
			
		||||
import os
 | 
			
		||||
from io import open
 | 
			
		||||
import re
 | 
			
		||||
import sys
 | 
			
		||||
 | 
			
		||||
nltk.download('punkt')
 | 
			
		||||
 | 
			
		||||
NUM = '<NUM>'
 | 
			
		||||
 | 
			
		||||
PUNCTS = {".": ".PER", ",": ".COM", "?": "?QUE", "!": ".PER", ":": ",COM", ";": ".PER", "-": ",COM"}
 | 
			
		||||
 | 
			
		||||
forbidden_symbols = re.compile(r"[\[\]\(\)\/\\\>\<\=\+\_\*]")
 | 
			
		||||
numbers = re.compile(r"\d")
 | 
			
		||||
multiple_punct = re.compile(r'([\.\?\!\,\:\;\-])(?:[\.\?\!\,\:\;\-]){1,}')
 | 
			
		||||
 | 
			
		||||
is_number = lambda x: len(numbers.sub("", x)) / len(x) < 0.6
 | 
			
		||||
 | 
			
		||||
def untokenize(line):
 | 
			
		||||
    return line.replace(" '", "'").replace(" n't", "n't").replace("can not", "cannot")
 | 
			
		||||
 | 
			
		||||
def skip(line):
 | 
			
		||||
 | 
			
		||||
    if line.strip() == '':
 | 
			
		||||
        return True
 | 
			
		||||
 | 
			
		||||
    last_symbol = line[-1]
 | 
			
		||||
    if not last_symbol in PUNCTS:
 | 
			
		||||
        return True
 | 
			
		||||
 | 
			
		||||
    if forbidden_symbols.search(line) is not None:
 | 
			
		||||
        return True
 | 
			
		||||
 | 
			
		||||
    return False
 | 
			
		||||
 | 
			
		||||
def process_line(line):
 | 
			
		||||
 | 
			
		||||
    tokens = word_tokenize(line)
 | 
			
		||||
    output_tokens = []
 | 
			
		||||
 | 
			
		||||
    for token in tokens:
 | 
			
		||||
 | 
			
		||||
        if token in PUNCTS:
 | 
			
		||||
            output_tokens.append(PUNCTS[token])
 | 
			
		||||
        elif is_number(token):
 | 
			
		||||
            output_tokens.append(NUM)
 | 
			
		||||
        else:
 | 
			
		||||
            output_tokens.append(token.lower())
 | 
			
		||||
 | 
			
		||||
    return untokenize(" ".join(output_tokens) + " ")
 | 
			
		||||
 | 
			
		||||
skipped = 0
 | 
			
		||||
 | 
			
		||||
with open(sys.argv[2], 'w', encoding='utf-8') as out_txt:
 | 
			
		||||
    with open(sys.argv[1], 'r', encoding='utf-8') as text:
 | 
			
		||||
 | 
			
		||||
        for line in text:
 | 
			
		||||
 | 
			
		||||
            line = line.replace("\"", "").strip()
 | 
			
		||||
            line = multiple_punct.sub(r"\g<1>", line)
 | 
			
		||||
 | 
			
		||||
            if skip(line):
 | 
			
		||||
                skipped += 1
 | 
			
		||||
                continue
 | 
			
		||||
 | 
			
		||||
            line = process_line(line)
 | 
			
		||||
 | 
			
		||||
            out_txt.write(line)
 | 
			
		||||
 | 
			
		||||
print("Skipped %d lines" % skipped)
 | 
			
		||||
@ -1,14 +1,13 @@
 | 
			
		||||
import numpy as np
 | 
			
		||||
import torch
 | 
			
		||||
import torch.autograd as autograd
 | 
			
		||||
import torch.nn as nn
 | 
			
		||||
import torch.optim as optim
 | 
			
		||||
from sklearn import metrics
 | 
			
		||||
from datetime import datetime
 | 
			
		||||
 | 
			
		||||
torch.manual_seed(1)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def argmax(vec):
 | 
			
		||||
    # return the argmax as a python int
 | 
			
		||||
    _, idx = torch.max(vec, 1)
 | 
			
		||||
@ -27,10 +26,6 @@ def log_sum_exp(vec):
 | 
			
		||||
    return max_score + \
 | 
			
		||||
        torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class BiLSTM_CRF(nn.Module):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim):
 | 
			
		||||
@ -65,7 +60,7 @@ class BiLSTM_CRF(nn.Module):
 | 
			
		||||
                torch.randn(2, 1, self.hidden_dim // 2))
 | 
			
		||||
 | 
			
		||||
    def _forward_alg(self, feats):
 | 
			
		||||
        # Forward algorithm to compute the partition function
 | 
			
		||||
        # Do the forward algorithm to compute the partition function
 | 
			
		||||
        init_alphas = torch.full((1, self.tagset_size), -10000.)
 | 
			
		||||
        # START_TAG has all of the score.
 | 
			
		||||
        init_alphas[0][self.tag_to_ix[START_TAG]] = 0.
 | 
			
		||||
@ -77,13 +72,18 @@ class BiLSTM_CRF(nn.Module):
 | 
			
		||||
        for feat in feats:
 | 
			
		||||
            alphas_t = []  # The forward tensors at this timestep
 | 
			
		||||
            for next_tag in range(self.tagset_size):
 | 
			
		||||
                # broadcast the emission score: it is the same regardless of the previous tag
 | 
			
		||||
                emit_score = feat[next_tag].view(1, -1).expand(1, self.tagset_size)
 | 
			
		||||
                # the ith entry of trans_score is the score of transitioning to next_tag from i
 | 
			
		||||
                # broadcast the emission score: it is the same regardless of
 | 
			
		||||
                # the previous tag
 | 
			
		||||
                emit_score = feat[next_tag].view(
 | 
			
		||||
                    1, -1).expand(1, self.tagset_size)
 | 
			
		||||
                # the ith entry of trans_score is the score of transitioning to
 | 
			
		||||
                # next_tag from i
 | 
			
		||||
                trans_score = self.transitions[next_tag].view(1, -1)
 | 
			
		||||
                # The ith entry of next_tag_var is the value for the edge (i -> next_tag) before we do log-sum-exp
 | 
			
		||||
                # The ith entry of next_tag_var is the value for the
 | 
			
		||||
                # edge (i -> next_tag) before we do log-sum-exp
 | 
			
		||||
                next_tag_var = forward_var + trans_score + emit_score
 | 
			
		||||
                # The forward variable for this tag is log-sum-exp of all the scores.
 | 
			
		||||
                # The forward variable for this tag is log-sum-exp of all the
 | 
			
		||||
                # scores.
 | 
			
		||||
                alphas_t.append(log_sum_exp(next_tag_var).view(1))
 | 
			
		||||
            forward_var = torch.cat(alphas_t).view(1, -1)
 | 
			
		||||
        terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
 | 
			
		||||
@ -158,7 +158,7 @@ class BiLSTM_CRF(nn.Module):
 | 
			
		||||
        gold_score = self._score_sentence(feats, tags)
 | 
			
		||||
        return forward_score - gold_score
 | 
			
		||||
 | 
			
		||||
    def forward(self, sentence):
 | 
			
		||||
    def forward(self, sentence):  # dont confuse this with _forward_alg above.
 | 
			
		||||
        # Get the emission scores from the BiLSTM
 | 
			
		||||
        lstm_feats = self._get_lstm_features(sentence)
 | 
			
		||||
 | 
			
		||||
@ -166,25 +166,12 @@ class BiLSTM_CRF(nn.Module):
 | 
			
		||||
        score, tag_seq = self._viterbi_decode(lstm_feats)
 | 
			
		||||
        return score, tag_seq
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
START_TAG = "<START>"
 | 
			
		||||
STOP_TAG = "<STOP>"
 | 
			
		||||
EMBEDDING_DIM = 5
 | 
			
		||||
HIDDEN_DIM = 4
 | 
			
		||||
 | 
			
		||||
'''
 | 
			
		||||
training_data = [(
 | 
			
		||||
    "hovorí sa ,COM že ľudstvo postihuje nová epidémia ,COM šíriaca sa závratnou rýchlosťou .PER preto je dôležité vedieť čo to je ,COM ako jej predísť alebo ako ju odstrániť .PER".split(),
 | 
			
		||||
    "S S C S S S S S C S S S S P S S S S S S S C S S S S S S S P".split()
 | 
			
		||||
), (
 | 
			
		||||
    "nárast obezity je spôsobený najmä spôsobom života .PER tuky zlepšujú chuť do jedla a dávajú lepší pocit sýtosti ,COM uvedomte si však ,COM že všetky tuky sa Vám ukladajú ,COM pokiaľ ich nespálite .PER".split(),
 | 
			
		||||
    "S S S S S S S P S S S S S S S S S S C S S S C S S S S S S C S S S P".split()
 | 
			
		||||
)]
 | 
			
		||||
'''
 | 
			
		||||
 | 
			
		||||
# Make up some training data
 | 
			
		||||
with open('/home/dlindvai/work/text.txt', 'r') as text2:
 | 
			
		||||
	with open('/home/dlindvai/work/tags.txt', 'r') as tags2:
 | 
			
		||||
		text1 = text2.read().splitlines()
 | 
			
		||||
@ -200,38 +187,60 @@ training_data = [( text.split() , tags.split() )]
 | 
			
		||||
 | 
			
		||||
word_to_ix = {}
 | 
			
		||||
for sentence, tags in training_data:
 | 
			
		||||
    for word in sentence:
 | 
			
		||||
        if word not in word_to_ix:
 | 
			
		||||
            word_to_ix[word] = len(word_to_ix)
 | 
			
		||||
	for word in sentence:
 | 
			
		||||
		if word not in word_to_ix:
 | 
			
		||||
			word_to_ix[word] = len(word_to_ix)
 | 
			
		||||
 | 
			
		||||
tag_to_ix = {"S": 0, "C": 1, "P": 2, "Q": 3, START_TAG: 4, STOP_TAG: 5}
 | 
			
		||||
tag_to_ix = {"S": 0, "P": 1, "C": 2, "Q": 3, "N": 4, START_TAG: 5, STOP_TAG: 6}
 | 
			
		||||
 | 
			
		||||
model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM)
 | 
			
		||||
optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Check predictions before training
 | 
			
		||||
with torch.no_grad():
 | 
			
		||||
    precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
 | 
			
		||||
    precheck_tags = torch.tensor([tag_to_ix[t] for t in training_data[0][1]], dtype=torch.long)
 | 
			
		||||
    print("Predicted output before training: ", model(precheck_sent))
 | 
			
		||||
	precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
 | 
			
		||||
	precheck_tags = torch.tensor([tag_to_ix[t] for t in training_data[0][1]], dtype=torch.long)
 | 
			
		||||
	#print(model(precheck_sent))
 | 
			
		||||
 | 
			
		||||
for epoch in range(30):  # normally you would NOT do 300 epochs, but this is small dataset
 | 
			
		||||
    for sentence, tags in training_data:
 | 
			
		||||
        # Step 1. Remember that Pytorch accumulates gradients.
 | 
			
		||||
        # We need to clear them out before each instance
 | 
			
		||||
        model.zero_grad()
 | 
			
		||||
 | 
			
		||||
        # Step 2. Get our inputs ready for the network, that is, turn them into Tensors of word indices.
 | 
			
		||||
        sentence_in = prepare_sequence(sentence, word_to_ix)
 | 
			
		||||
        targets = torch.tensor([tag_to_ix[t] for t in tags], dtype=torch.long)
 | 
			
		||||
# Print start time
 | 
			
		||||
start = datetime.now()
 | 
			
		||||
start_time = start.strftime("%H:%M:%S")
 | 
			
		||||
print("Start time = ", start_time)
 | 
			
		||||
 | 
			
		||||
        # Step 3. Run our forward pass.
 | 
			
		||||
        loss = model.neg_log_likelihood(sentence_in, targets)
 | 
			
		||||
for epoch in range(50):
 | 
			
		||||
	for sentence, tags in training_data:
 | 
			
		||||
		# Step 1. Remember that Pytorch accumulates gradients. We need to clear them out before each instance
 | 
			
		||||
		model.zero_grad()
 | 
			
		||||
 | 
			
		||||
        # Step 4. Compute the loss, gradients, and update the parameters by calling optimizer.step()
 | 
			
		||||
        loss.backward()
 | 
			
		||||
        optimizer.step()
 | 
			
		||||
		# Step 2. Get our inputs ready for the network, that is, turn them into Tensors of word indices.
 | 
			
		||||
		sentence_in = prepare_sequence(sentence, word_to_ix)
 | 
			
		||||
		targets = torch.tensor([tag_to_ix[t] for t in tags], dtype=torch.long)
 | 
			
		||||
 | 
			
		||||
		# Step 3. Run our forward pass.
 | 
			
		||||
		loss = model.neg_log_likelihood(sentence_in, targets)
 | 
			
		||||
 | 
			
		||||
		# Step 4. Compute the loss, gradients, and update the parameters by calling optimizer.step()
 | 
			
		||||
		loss.backward()
 | 
			
		||||
		optimizer.step()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Check predictions after training
 | 
			
		||||
with torch.no_grad():
 | 
			
		||||
    precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
 | 
			
		||||
    print("Predicted output after training: ", model(precheck_sent))
 | 
			
		||||
	precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
 | 
			
		||||
	#print(model(precheck_sent))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Error calculator
 | 
			
		||||
var = model(precheck_sent)
 | 
			
		||||
y_true = np.array(targets)
 | 
			
		||||
y_pred = np.array(var[1])
 | 
			
		||||
 | 
			
		||||
print(metrics.confusion_matrix(y_true, y_pred))
 | 
			
		||||
print(metrics.classification_report(y_true, y_pred, digits=3))
 | 
			
		||||
 | 
			
		||||
# Print finish time
 | 
			
		||||
finish = datetime.now()
 | 
			
		||||
finish_time = finish.strftime("%H:%M:%S")
 | 
			
		||||
print("Finish time = ", finish_time)
 | 
			
		||||
 | 
			
		||||
@ -1,14 +0,0 @@
 | 
			
		||||
import re
 | 
			
		||||
import os
 | 
			
		||||
 | 
			
		||||
if os.path.exists('text.txt'):
 | 
			
		||||
	os.remove('text.txt')
 | 
			
		||||
 | 
			
		||||
with open('/home/dlindvai/work/train.txt', 'r') as input_file:
 | 
			
		||||
	with open('/home/dlindvai/work/text.txt', 'a') as output_file:
 | 
			
		||||
		for line in input_file:
 | 
			
		||||
			line = line.replace('\n', '')
 | 
			
		||||
			line = re.sub(r"([\w/'+$\s-]+|[^\w/'+$\s-]+)\s*", r"\1 ", line)
 | 
			
		||||
			line = line.lower()
 | 
			
		||||
			line = line.replace('.','.PER').replace(',',',COM').replace('?','?QUE')
 | 
			
		||||
			output_file.write(line)
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user