Aktualizovat „pages/students/2016/patrik_pavlisin/dp21/README.md“
This commit is contained in:
parent
e864c7cd55
commit
634f0f8a63
@ -17,13 +17,13 @@ Vlastnosti LSTM:
|
|||||||
|
|
||||||
- sú vhodné na klasifikáciu, spracovanie a vytváranie predikcií na základe časových údajov
|
- sú vhodné na klasifikáciu, spracovanie a vytváranie predikcií na základe časových údajov
|
||||||
|
|
||||||
- LSTM boli definované tak, aby si na rozdiel od RNN vedeli pomôcť s problémom, ktorý sa nazýva „Exploding and vanishing gradient problems“.
|
- LSTM boli definované tak, aby si na rozdiel od RNN vedeli pomôcť s problémom, ktorý sa nazýva „Exploding and vanishing gradient problems“. [1]
|
||||||
|
|
||||||
## Exploding and vanishing gradient problems
|
## Exploding and vanishing gradient problems
|
||||||
|
|
||||||
V strojovom učení sa s problémom miznúceho gradientu stretávame pri trénovaní umelých neurónových sietí metódami učenia založenými na gradiente a spätnou propagáciou. V takýchto metódach dostáva každá z váh neurónovej siete aktualizáciu úmernú čiastočnej derivácii chybovej funkcie vzhľadom na aktuálnu váhu v každej iterácii tréningu. Problém je v tom, že v niektorých prípadoch bude gradient zbytočne malý, čo účinne zabráni tomu, aby váha zmenila svoju hodnotu. V najhoršom prípade to môže úplne zabrániť neurónovej sieti v ďalšom tréningu. Ako jeden príklad príčiny problému majú tradičné aktivačné funkcie, ako je hyperbolická tangenciálna funkcia, gradienty v rozsahu (0, 1) a spätné šírenie počíta gradienty podľa pravidla reťazca. To má za následok znásobenie n týchto malých čísel na výpočet gradientov prvých vrstiev v sieti n-vrstiev, čo znamená, že gradient (chybový signál) exponenciálne klesá s n, zatiaľ čo prvé vrstvy trénujú veľmi pomaly.
|
V strojovom učení sa s problémom miznúceho gradientu stretávame pri trénovaní umelých neurónových sietí metódami učenia založenými na gradiente a spätnou propagáciou. V takýchto metódach dostáva každá z váh neurónovej siete aktualizáciu úmernú čiastočnej derivácii chybovej funkcie vzhľadom na aktuálnu váhu v každej iterácii tréningu. Problém je v tom, že v niektorých prípadoch bude gradient zbytočne malý, čo účinne zabráni tomu, aby váha zmenila svoju hodnotu. V najhoršom prípade to môže úplne zabrániť neurónovej sieti v ďalšom tréningu. Ako jeden príklad príčiny problému majú tradičné aktivačné funkcie, ako je hyperbolická tangenciálna funkcia, gradienty v rozsahu (0, 1) a spätné šírenie počíta gradienty podľa pravidla reťazca. To má za následok znásobenie n týchto malých čísel na výpočet gradientov prvých vrstiev v sieti n-vrstiev, čo znamená, že gradient (chybový signál) exponenciálne klesá s n, zatiaľ čo prvé vrstvy trénujú veľmi pomaly.
|
||||||
|
|
||||||
Ak sa použijú aktivačné funkcie, ktorých deriváty môžu nadobúdať väčšie hodnoty, riskujeme, že narazíme na súvisiaci problém s explodujúcim gradientom. Problém s explodujúcim gradientom je problém, ktorý sa môže vyskytnúť pri trénovaní umelých neurónových sietí pomocou gradientného klesania spätným šírením. Problém s explodujúcim gradientom je možné vyriešiť prepracovaním sieťového modelu, použitím usmernenej lineárnej aktivácie, využitím sietí s dlhodobou krátkodobou pamäťou (LSTM), orezaním gradientu a regularizáciou hmotnosti. Ďalším riešením problému s explodujúcim gradientom je zabrániť tomu, aby sa gradienty zmenili na 0, a to pomocou procesu známeho ako orezávanie gradientov, ktorý kladie na každý gradient vopred definovanú hranicu. Orezávanie prechodov zaisťuje, že prechody budú smerovať rovnakým smerom, ale s kratšími dĺžkami.
|
Ak sa použijú aktivačné funkcie, ktorých deriváty môžu nadobúdať väčšie hodnoty, riskujeme, že narazíme na súvisiaci problém s explodujúcim gradientom. Problém s explodujúcim gradientom je problém, ktorý sa môže vyskytnúť pri trénovaní umelých neurónových sietí pomocou gradientného klesania spätným šírením. Problém s explodujúcim gradientom je možné vyriešiť prepracovaním sieťového modelu, použitím usmernenej lineárnej aktivácie, využitím sietí s dlhodobou krátkodobou pamäťou (LSTM), orezaním gradientu a regularizáciou hmotnosti. Ďalším riešením problému s explodujúcim gradientom je zabrániť tomu, aby sa gradienty zmenili na 0, a to pomocou procesu známeho ako orezávanie gradientov, ktorý kladie na každý gradient vopred definovanú hranicu. Orezávanie prechodov zaisťuje, že prechody budú smerovať rovnakým smerom, ale s kratšími dĺžkami. [2]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -41,7 +41,7 @@ Vo vyššie uvedenom príklade je slovo „Jet“ rozdelené na dve slovné spoj
|
|||||||
|
|
||||||
Wordpiece model sa generuje pomocou prístupu založeného na údajoch, aby sa maximalizovala pravdepodobnosť jazykových modelov cvičných údajov, vzhľadom na vyvíjajúcu sa definíciu slova. Vzhľadom na cvičný korpus a množstvo požadovaných tokenov D je problémom optimalizácie výber wordpieces D tak, aby výsledný korpus bol minimálny v počte wordpieces, ak sú segmentované podľa zvoleného wordpiece modelu. V tejto implementácii používame špeciálny symbol iba na začiatku slov, a nie na oboch koncoch. Počet základných znakov tiež znížime na zvládnuteľný počet v závislosti na údajoch (zhruba 500 pre západné jazyky, viac pre ázijské jazyky). Zistili sme, že použitím celkovej slovnej zásoby medzi 8 000 a 32 000 slovnými jednotkami sa dosahuje dobrá presnosť (skóre BLEU) aj rýchla rýchlosť dekódovania pre dané jazykové páry.
|
Wordpiece model sa generuje pomocou prístupu založeného na údajoch, aby sa maximalizovala pravdepodobnosť jazykových modelov cvičných údajov, vzhľadom na vyvíjajúcu sa definíciu slova. Vzhľadom na cvičný korpus a množstvo požadovaných tokenov D je problémom optimalizácie výber wordpieces D tak, aby výsledný korpus bol minimálny v počte wordpieces, ak sú segmentované podľa zvoleného wordpiece modelu. V tejto implementácii používame špeciálny symbol iba na začiatku slov, a nie na oboch koncoch. Počet základných znakov tiež znížime na zvládnuteľný počet v závislosti na údajoch (zhruba 500 pre západné jazyky, viac pre ázijské jazyky). Zistili sme, že použitím celkovej slovnej zásoby medzi 8 000 a 32 000 slovnými jednotkami sa dosahuje dobrá presnosť (skóre BLEU) aj rýchla rýchlosť dekódovania pre dané jazykové páry.
|
||||||
|
|
||||||
V preklade má často zmysel kopírovať zriedkavé názvy entít alebo čísla priamo zo zdroja do cieľa. Na uľahčenie tohto typu priameho kopírovania vždy používame wordpiece model pre zdrojový aj cieľový jazyk. Použitím tohto prístupu je zaručené, že rovnaký reťazec vo zdrojovej a cieľovej vete bude segmentovaný presne rovnakým spôsobom, čo uľahčí systému naučiť sa kopírovať tieto tokeny. Wordpieces dosahujú rovnováhu medzi flexibilitou znakov a efektívnosťou slov. Zistili sme tiež, že naše modely dosahujú lepšie celkové skóre BLEU pri používaní wordpieces - pravdepodobne kvôli tomu, že naše modely teraz efektívne pracujú v podstate s nekonečnou slovnou zásobou bez toho, aby sa uchýlili iba k znakom.
|
V preklade má často zmysel kopírovať zriedkavé názvy entít alebo čísla priamo zo zdroja do cieľa. Na uľahčenie tohto typu priameho kopírovania vždy používame wordpiece model pre zdrojový aj cieľový jazyk. Použitím tohto prístupu je zaručené, že rovnaký reťazec vo zdrojovej a cieľovej vete bude segmentovaný presne rovnakým spôsobom, čo uľahčí systému naučiť sa kopírovať tieto tokeny. Wordpieces dosahujú rovnováhu medzi flexibilitou znakov a efektívnosťou slov. Zistili sme tiež, že naše modely dosahujú lepšie celkové skóre BLEU pri používaní wordpieces - pravdepodobne kvôli tomu, že naše modely teraz efektívne pracujú v podstate s nekonečnou slovnou zásobou bez toho, aby sa uchýlili iba k znakom. [1]
|
||||||
|
|
||||||
**Neurónová sieť**
|
**Neurónová sieť**
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user