update
This commit is contained in:
		
							parent
							
								
									bf640d92f7
								
							
						
					
					
						commit
						417a3c9319
					
				
							
								
								
									
										13
									
								
								pages/students/2016/darius_lindvai/dp2021/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								pages/students/2016/darius_lindvai/dp2021/README.md
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,13 @@
 | 
				
			|||||||
 | 
					## Update 09.04.2020
 | 
				
			||||||
 | 
					- Upravil som vzorový zdrojový kód, ktorý riešil Named-Entity Recognition, tak, aby dopĺňal interpunkciu.
 | 
				
			||||||
 | 
					- Momentálne to funguje s ručne vpísanými trénovacími dátami a ručným "otagovaním", avšak iba pre bodku a otáznik.
 | 
				
			||||||
 | 
					- Keď som skúšal použiť dáta, kde bol aj otáznik, ale namiesto otáznika model doplňoval bodku.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					vysvetlenie zápisu dát:
 | 
				
			||||||
 | 
					- v texte som nahradil interpunciu slovami, resp. skratkami ('.' -> 'PER', ',' -> 'COM', '?' -> '.QUE')
 | 
				
			||||||
 | 
					- sekvencie slov som označil ako "S", nerozlišoval som slovné druhy
 | 
				
			||||||
 | 
					- interpunkčné znamienka som označil ako "C" (pre čiarku), "P" (pre bodku) a "Q" (pre otáznik)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					vysvetlenie výstupu: 
 | 
				
			||||||
 | 
					- Prvý tensor je predikcia modelu pred trénovaním.
 | 
				
			||||||
 | 
					- Druhý tensor je predikcia po trénovaní.
 | 
				
			||||||
							
								
								
									
										221
									
								
								pages/students/2016/darius_lindvai/dp2021/punc.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										221
									
								
								pages/students/2016/darius_lindvai/dp2021/punc.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,221 @@
 | 
				
			|||||||
 | 
					import torch
 | 
				
			||||||
 | 
					import torch.autograd as autograd
 | 
				
			||||||
 | 
					import torch.nn as nn
 | 
				
			||||||
 | 
					import torch.optim as optim
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					torch.manual_seed(1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def argmax(vec):
 | 
				
			||||||
 | 
					    # return the argmax as a python int
 | 
				
			||||||
 | 
					    _, idx = torch.max(vec, 1)
 | 
				
			||||||
 | 
					    return idx.item()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def prepare_sequence(seq, to_ix):
 | 
				
			||||||
 | 
					    idxs = [to_ix[w] for w in seq]
 | 
				
			||||||
 | 
					    return torch.tensor(idxs, dtype=torch.long)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Compute log sum exp in a numerically stable way for the forward algorithm
 | 
				
			||||||
 | 
					def log_sum_exp(vec):
 | 
				
			||||||
 | 
					    max_score = vec[0, argmax(vec)]
 | 
				
			||||||
 | 
					    max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1])
 | 
				
			||||||
 | 
					    return max_score + \
 | 
				
			||||||
 | 
					        torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class BiLSTM_CRF(nn.Module):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim):
 | 
				
			||||||
 | 
					        super(BiLSTM_CRF, self).__init__()
 | 
				
			||||||
 | 
					        self.embedding_dim = embedding_dim
 | 
				
			||||||
 | 
					        self.hidden_dim = hidden_dim
 | 
				
			||||||
 | 
					        self.vocab_size = vocab_size
 | 
				
			||||||
 | 
					        self.tag_to_ix = tag_to_ix
 | 
				
			||||||
 | 
					        self.tagset_size = len(tag_to_ix)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        self.word_embeds = nn.Embedding(vocab_size, embedding_dim)
 | 
				
			||||||
 | 
					        self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2,
 | 
				
			||||||
 | 
					                            num_layers=1, bidirectional=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Maps the output of the LSTM into tag space.
 | 
				
			||||||
 | 
					        self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Matrix of transition parameters.  Entry i,j is the score of
 | 
				
			||||||
 | 
					        # transitioning *to* i *from* j.
 | 
				
			||||||
 | 
					        self.transitions = nn.Parameter(
 | 
				
			||||||
 | 
					            torch.randn(self.tagset_size, self.tagset_size))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # These two statements enforce the constraint that we never transfer
 | 
				
			||||||
 | 
					        # to the start tag and we never transfer from the stop tag
 | 
				
			||||||
 | 
					        self.transitions.data[tag_to_ix[START_TAG], :] = -10000
 | 
				
			||||||
 | 
					        self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        self.hidden = self.init_hidden()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def init_hidden(self):
 | 
				
			||||||
 | 
					        return (torch.randn(2, 1, self.hidden_dim // 2),
 | 
				
			||||||
 | 
					                torch.randn(2, 1, self.hidden_dim // 2))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def _forward_alg(self, feats):
 | 
				
			||||||
 | 
					        # Forward algorithm to compute the partition function
 | 
				
			||||||
 | 
					        init_alphas = torch.full((1, self.tagset_size), -10000.)
 | 
				
			||||||
 | 
					        # START_TAG has all of the score.
 | 
				
			||||||
 | 
					        init_alphas[0][self.tag_to_ix[START_TAG]] = 0.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Wrap in a variable so that we will get automatic backprop
 | 
				
			||||||
 | 
					        forward_var = init_alphas
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Iterate through the sentence
 | 
				
			||||||
 | 
					        for feat in feats:
 | 
				
			||||||
 | 
					            alphas_t = []  # The forward tensors at this timestep
 | 
				
			||||||
 | 
					            for next_tag in range(self.tagset_size):
 | 
				
			||||||
 | 
					                # broadcast the emission score: it is the same regardless of the previous tag
 | 
				
			||||||
 | 
					                emit_score = feat[next_tag].view(1, -1).expand(1, self.tagset_size)
 | 
				
			||||||
 | 
					                # the ith entry of trans_score is the score of transitioning to next_tag from i
 | 
				
			||||||
 | 
					                trans_score = self.transitions[next_tag].view(1, -1)
 | 
				
			||||||
 | 
					                # The ith entry of next_tag_var is the value for the edge (i -> next_tag) before we do log-sum-exp
 | 
				
			||||||
 | 
					                next_tag_var = forward_var + trans_score + emit_score
 | 
				
			||||||
 | 
					                # The forward variable for this tag is log-sum-exp of all the scores.
 | 
				
			||||||
 | 
					                alphas_t.append(log_sum_exp(next_tag_var).view(1))
 | 
				
			||||||
 | 
					            forward_var = torch.cat(alphas_t).view(1, -1)
 | 
				
			||||||
 | 
					        terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
 | 
				
			||||||
 | 
					        alpha = log_sum_exp(terminal_var)
 | 
				
			||||||
 | 
					        return alpha
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def _get_lstm_features(self, sentence):
 | 
				
			||||||
 | 
					        self.hidden = self.init_hidden()
 | 
				
			||||||
 | 
					        embeds = self.word_embeds(sentence).view(len(sentence), 1, -1)
 | 
				
			||||||
 | 
					        lstm_out, self.hidden = self.lstm(embeds, self.hidden)
 | 
				
			||||||
 | 
					        lstm_out = lstm_out.view(len(sentence), self.hidden_dim)
 | 
				
			||||||
 | 
					        lstm_feats = self.hidden2tag(lstm_out)
 | 
				
			||||||
 | 
					        return lstm_feats
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def _score_sentence(self, feats, tags):
 | 
				
			||||||
 | 
					        # Gives the score of a provided tag sequence
 | 
				
			||||||
 | 
					        score = torch.zeros(1)
 | 
				
			||||||
 | 
					        tags = torch.cat([torch.tensor([self.tag_to_ix[START_TAG]], dtype=torch.long), tags])
 | 
				
			||||||
 | 
					        for i, feat in enumerate(feats):
 | 
				
			||||||
 | 
					            score = score + \
 | 
				
			||||||
 | 
					                self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]]
 | 
				
			||||||
 | 
					        score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]]
 | 
				
			||||||
 | 
					        return score
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def _viterbi_decode(self, feats):
 | 
				
			||||||
 | 
					        backpointers = []
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Initialize the viterbi variables in log space
 | 
				
			||||||
 | 
					        init_vvars = torch.full((1, self.tagset_size), -10000.)
 | 
				
			||||||
 | 
					        init_vvars[0][self.tag_to_ix[START_TAG]] = 0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # forward_var at step i holds the viterbi variables for step i-1
 | 
				
			||||||
 | 
					        forward_var = init_vvars
 | 
				
			||||||
 | 
					        for feat in feats:
 | 
				
			||||||
 | 
					            bptrs_t = []  # holds the backpointers for this step
 | 
				
			||||||
 | 
					            viterbivars_t = []  # holds the viterbi variables for this step
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            for next_tag in range(self.tagset_size):
 | 
				
			||||||
 | 
					                # next_tag_var[i] holds the viterbi variable for tag i at the
 | 
				
			||||||
 | 
					                # previous step, plus the score of transitioning
 | 
				
			||||||
 | 
					                # from tag i to next_tag.
 | 
				
			||||||
 | 
					                # We don't include the emission scores here because the max
 | 
				
			||||||
 | 
					                # does not depend on them (we add them in below)
 | 
				
			||||||
 | 
					                next_tag_var = forward_var + self.transitions[next_tag]
 | 
				
			||||||
 | 
					                best_tag_id = argmax(next_tag_var)
 | 
				
			||||||
 | 
					                bptrs_t.append(best_tag_id)
 | 
				
			||||||
 | 
					                viterbivars_t.append(next_tag_var[0][best_tag_id].view(1))
 | 
				
			||||||
 | 
					            # Now add in the emission scores, and assign forward_var to the set
 | 
				
			||||||
 | 
					            # of viterbi variables we just computed
 | 
				
			||||||
 | 
					            forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1)
 | 
				
			||||||
 | 
					            backpointers.append(bptrs_t)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Transition to STOP_TAG
 | 
				
			||||||
 | 
					        terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
 | 
				
			||||||
 | 
					        best_tag_id = argmax(terminal_var)
 | 
				
			||||||
 | 
					        path_score = terminal_var[0][best_tag_id]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Follow the back pointers to decode the best path.
 | 
				
			||||||
 | 
					        best_path = [best_tag_id]
 | 
				
			||||||
 | 
					        for bptrs_t in reversed(backpointers):
 | 
				
			||||||
 | 
					            best_tag_id = bptrs_t[best_tag_id]
 | 
				
			||||||
 | 
					            best_path.append(best_tag_id)
 | 
				
			||||||
 | 
					        # Pop off the start tag (we dont want to return that to the caller)
 | 
				
			||||||
 | 
					        start = best_path.pop()
 | 
				
			||||||
 | 
					        assert start == self.tag_to_ix[START_TAG]  # Sanity check
 | 
				
			||||||
 | 
					        best_path.reverse()
 | 
				
			||||||
 | 
					        return path_score, best_path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def neg_log_likelihood(self, sentence, tags):
 | 
				
			||||||
 | 
					        feats = self._get_lstm_features(sentence)
 | 
				
			||||||
 | 
					        forward_score = self._forward_alg(feats)
 | 
				
			||||||
 | 
					        gold_score = self._score_sentence(feats, tags)
 | 
				
			||||||
 | 
					        return forward_score - gold_score
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def forward(self, sentence):
 | 
				
			||||||
 | 
					        # Get the emission scores from the BiLSTM
 | 
				
			||||||
 | 
					        lstm_feats = self._get_lstm_features(sentence)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Find the best path, given the features.
 | 
				
			||||||
 | 
					        score, tag_seq = self._viterbi_decode(lstm_feats)
 | 
				
			||||||
 | 
					        return score, tag_seq
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					START_TAG = "<START>"
 | 
				
			||||||
 | 
					STOP_TAG = "<STOP>"
 | 
				
			||||||
 | 
					EMBEDDING_DIM = 5
 | 
				
			||||||
 | 
					HIDDEN_DIM = 4
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					training_data = [(
 | 
				
			||||||
 | 
					    "hovorí sa ,COM že ľudstvo postihuje nová epidémia ,COM šíriaca sa závratnou rýchlosťou .PER preto je dôležité vedieť čo to je ,COM ako jej predísť alebo ako ju odstrániť .PER".split(),
 | 
				
			||||||
 | 
					    "S S C S S S S S C S S S S P S S S S S S S C S S S S S S S P".split()
 | 
				
			||||||
 | 
					), (
 | 
				
			||||||
 | 
					    "nárast obezity je spôsobený najmä spôsobom života .PER tuky zlepšujú chuť do jedla a dávajú lepší pocit sýtosti ,COM uvedomte si však ,COM že všetky tuky sa Vám ukladajú ,COM pokiaľ ich nespálite .PER".split(),
 | 
				
			||||||
 | 
					    "S S S S S S S P S S S S S S S S S S C S S S C S S S S S S C S S S P".split()
 | 
				
			||||||
 | 
					)]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					word_to_ix = {}
 | 
				
			||||||
 | 
					for sentence, tags in training_data:
 | 
				
			||||||
 | 
					    for word in sentence:
 | 
				
			||||||
 | 
					        if word not in word_to_ix:
 | 
				
			||||||
 | 
					            word_to_ix[word] = len(word_to_ix)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					tag_to_ix = {"S": 0, "C": 1, "P": 2, "E": 3, START_TAG: 4, STOP_TAG: 5}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM)
 | 
				
			||||||
 | 
					optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					with torch.no_grad():
 | 
				
			||||||
 | 
					    precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
 | 
				
			||||||
 | 
					    precheck_tags = torch.tensor([tag_to_ix[t] for t in training_data[0][1]], dtype=torch.long)
 | 
				
			||||||
 | 
					    print("Predicted output before training: ", model(precheck_sent))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					for epoch in range(300):  # normally you would NOT do 300 epochs, but this is small dataset
 | 
				
			||||||
 | 
					    for sentence, tags in training_data:
 | 
				
			||||||
 | 
					        # Step 1. Remember that Pytorch accumulates gradients.
 | 
				
			||||||
 | 
					        # We need to clear them out before each instance
 | 
				
			||||||
 | 
					        model.zero_grad()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Step 2. Get our inputs ready for the network, that is, turn them into Tensors of word indices.
 | 
				
			||||||
 | 
					        sentence_in = prepare_sequence(sentence, word_to_ix)
 | 
				
			||||||
 | 
					        targets = torch.tensor([tag_to_ix[t] for t in tags], dtype=torch.long)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Step 3. Run our forward pass.
 | 
				
			||||||
 | 
					        loss = model.neg_log_likelihood(sentence_in, targets)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # Step 4. Compute the loss, gradients, and update the parameters by calling optimizer.step()
 | 
				
			||||||
 | 
					        loss.backward()
 | 
				
			||||||
 | 
					        optimizer.step()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					with torch.no_grad():
 | 
				
			||||||
 | 
					    precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
 | 
				
			||||||
 | 
					    print("Predicted output after training: ", model(precheck_sent))
 | 
				
			||||||
							
								
								
									
										11
									
								
								pages/students/2016/darius_lindvai/dp2021/script1.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										11
									
								
								pages/students/2016/darius_lindvai/dp2021/script1.py
									
									
									
									
									
										Executable file
									
								
							@ -0,0 +1,11 @@
 | 
				
			|||||||
 | 
					# coding: utf-8
 | 
				
			||||||
 | 
					#!/usr/bin/python
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import codecs
 | 
				
			||||||
 | 
					import sys
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					with codecs.open(sys.argv[2],'w') as out_txt:
 | 
				
			||||||
 | 
					        with codecs.open(sys.argv[1],'r') as text:
 | 
				
			||||||
 | 
					            for line in text:
 | 
				
			||||||
 | 
					                line = line.replace('.','PER').replace(',','COM').replace('?','QUE')
 | 
				
			||||||
 | 
					                out_txt.write(line)
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user