- Zlepšiť generovanie odpovedí pre úlohy vyžadujúce viac krokov.
Príprava:
- Zopakujte si Python.
- Vyskúšajte si prácu s veľkými jazykovými modelmi. Nainštalujte si oollama.
- Oboznámte sa s framewworkom LangChain.
- pozrite si LangChain Transformers Agents.
- Ako funguje FunctionCalling - AgentTools?.
- Zistite ako funguje REACT (Reasoning and Acting) Agent - nájdite článok na Scholar.
- Zistite ako funguje dotrénovnaie veľkých jazykových modelov. Zistite čo je to PEFT (LORA, QLORA) a čo je to kvantizácia. Zisite čo je to "few shot" prompting.
- Čo je to inferenčný server. Zistite čo je to VLLM, na čo je to dobré. Pozri si LocalAI.
- Vypracujte pravidlá pre rozpoznanie neznámeho zámeru. Cieľ je aby chatbot vedel upozorniť na agendu ktorú nemá implementovanú a vedel ponúknuť čo vie.
- Pracujte na zlepšení rozpoznávania firiem, priezvisk. Firma sa môže volač hocijak, Je tam možnosť využiť obchodný register.
- pridajte možnosť využiť chatgpt alebo inú službu na generovanie odpoveďe.
- Pridajte testovacie scenáre vytvorené 3. neznalým človekom a vyhodnotte chatbota. Chceme vedieť, aký dobrý je pri rozpoznávaní intentov, a ktoré intenty a entity sú problematické. Určite ako to zlepšiť.
- Stále píšte. Zlepšite časť o rozpoznávaní intentov a pomentovaných entít.
- Zlepšite Vášho chatbota pomocou ChatGPT. So službou viete komunikovať pomocou Python API a "api tokenu". LLM je možné dotrénovať na vlastných dátach. Alebo LLM vie riešiť špecifickú úlohu ktorú definujete pomocou "promptu".
- Pokračujte v písomnej časti.
- Pripravte testovacie scenáre pre Vašu sadu pravidiel a vyhodnotte pomocou nej chatbota. Jedna množina na vyhodnotenie bude Vaša a druhá množina kolegu Šarišského.
- [x] Integrovať Vašu bázu pravidiel s kolegom Šarišským. Spraviť z toho jedného bota.
- [x] Zistite si ako pracujú veľké jazykové modely LLM a napíšte si o tom poznámky.
- [x] Preštudujte si, ako integrovať veľké jazykové modely s RASA. Veľké jazykové modely sú ChatGPT alebo BARD. Na ChatGPT máte k dispozícici študentské kredity cez Azure Dev Tools for Teaching.
- [ ] Zlepšite Vášho chatbota pomocou ChatGPT. So službou viete komunikovať pomocou Python API a "api tokenu". LLM je možné dotrénovať na vlastných dátach. Alebo LLM vie riešiť špecifickú úlohu ktorú definujete pomocou "promptu".
- Práca na "Forms" v RASA. Problém s "Policy" konfiguráciou bol skonzultovaný.
Úlohy:
- Riešte problém s Policy pomocou "debug" výpisov.
- Píšte BP. Opíšte ako funguje NLU a ako funguje rozhodovanie pomcou pravidiel v RASA.
Zásobník úloh:
- Naštudujte si čo je to Reinforcement learning a ako to súvisí s chatbotmi. https://www.telusinternational.com/insights/ai-data/article/reinforcement-learning-primer . Napíšte si o tom aj poznámky.
- Nadviažte na prácu p. Šarišského a navrhnite a implementujte chatbota na riešenie vybraných a analyzovaných úloh. Chatbot by mal vedieť identifikovať problém, mal by vedieť či je schopný ho riešiť. Potom by mal naštartovať postup pre riešenie daného problému.
- Naštudujte si RASA Forms aby ste vedeli pomôcť človeku vyplniť formulár.
- Vytvorte pomôcku pre vyplnenie formulára s pomocou chatbota a RASA Forms pre viacero problémov. Vyberte jednoduché problémy s malým počtom "slotov".
- pravidlá pre chatbota uložte na GIT repozitár s názvom bp2023. Môžete prístup zdieľať s kolegom.
- Prečítajte si najnovšie články o chatbotoch vo verejnej správe "chatbot citizen services". Zistite aké metódy používajú a napíšte o tom do písomnej práce.
- napíšte testovacie konverzácie pre Vaše pravidlá.
- Zistite ako pracuje generatívny jazykový model (GPT, T5, LLAMA) a ako sa dá využiť v dialógových systémoch. Sú založené na neurónových sieťach typu Transformer.
- [x] Pozrite si stránku https://www.esluzbykosice.sk/. Vyberte niekoľko vzorových problémov a ku nim implementuje asistenta na ich riešenie. Napríklad, občan chce zaplatiť za odvoz odpadu a nevie čo má robiť. Alebo občan si kúpil psa a nevie aké má povinnosti.