- Metrika Pass@K sa používa na vyhodnotenie generovaného kódu. Meria, koľko automatických textov bolo splnených. Používa sa aj BLEU, verzia CodeBLEU. CodeJudge.
- Na testovanie generovaných testov sa používajú: vykonanie produkčného kódu, pokrytie testov, mutácie kódu, statická analýza generovaného kódu.
- Vypracujte písomný prehľad. Napíšte aké modely sa používajú, Akým spôsobom sa vyhodnocujú. Použite odborné články. Odborné články nájdete na google scholar alebo scopus.
- Pripravte vzorovú dátovú množinu. Hotové testy, implementácie aj dokumentáciu., Možno vybrať exsitujúci open source projekt alebo hotovú dátovú množinu.
- Vyskúšajte niekoľko jazkovych modelov pre generovanie kódu aj generovanie testov.
- Do diplomovej práce vypracujte experimenty kde vyhodnotíte jazykové modely pre generovanie testov v rôznych prostrediach.
Zásobník úloh:
- Dotrénujte model pre lepšie generovansie testov.
- Nainštalujte si prostredie Anaconda, pozrite si knihu https://diveintopython3.net/
Dive Into Python 3
- pre úvod do neurónových sietí si prečítajte knihu https://d2l.ai/index.html Dive into Deep Learning — Dive into Deep Learning 1.0.3 documentation
- vyskúšajte viac modelov pre generovanie kódu. Codex, Copilot, ChatGPT
- zistite ako funguje veľký jazykový model
Zásobník úloh (zadanie na ďalšie stretnutie):
- Zistite zoznam open source modelov pre generovanie kódu a porovnajte ich možnosti. Zoznam zapíšte do textového súboru.
- Vyberte si jeden z modelov na generovanie kódu, nainštalujte si ho a vyskúšajte.
- Zistite, ako sa číselne vyjadrí kvalita generovania počítačového kódu. Aké metriky sa používajú? Zistie aké trénovacie a vyhodnocovacie množiny sa používaju. Zoznam zapíšte do súboru.
- Zistite, ako sa dá taký model "dotrénovať" na špecifickú úlohu generovania testov.